This letter provides clear insight into the interplay between electron and hole characteristics of carriers within the forbidden gap during the band-to-band tunneling process, taking graphene-nanoribbons as an example. Accurate numerical models are presented and analytical formulas for tunneling probabilities are derived for both source/drain to channel and direct source-drain tunneling based on the Wentzel–Kramers–Brillouin (WKB) method. It is shown that not considering the electron-hole duality can lead to significant errors in numerical calculations, and more importantly, lack of proper understanding of the phenomenon gives rise to seriously misleading conclusions. Furthermore, the regime of validity of the WKB approximation for graphene-nanoribbon tunnel-field-effect-transistors is discussed in light of the electron-hole duality concept.

1.
J.
Knoch
and
J.
Appenzeller
,
Device Research Conference
,
2005
, p.
153
.
2.
M. T.
Björk
,
J.
Knoch
,
H.
Schmid
,
H.
Riel
, and
W.
Riess
,
Appl. Phys. Lett.
92
,
193504
(
2008
).
3.
K. K.
Bhuwalka
,
S.
Sedlmaier
,
A. K.
Ludsteck
,
C.
Tolksdorf
,
J.
Schulze
, and
I.
Eisele
,
IEEE Trans. Electron Devices
51
,
279
(
2004
).
4.
S. H.
Kim
,
H.
Kam
,
C.
Hu
, and
T. -J. K.
Liu
,
Dig. Tech. Pap. - Symp. VLSI Technol.
2009
,
178
.
5.
N. N.
Mojumder
and
K.
Roy
,
IEEE Trans. Electron Devices
56
,
2193
(
2009
).
6.
Y.
Gao
,
T.
Low
, and
M.
Lundstrom
,
Dig. Tech. Pap. - Symp. VLSI Technol.
2009
,
180
.
7.
S. M.
Sze
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
New York
,
2007
).
8.
S.
Banerjee
,
W.
Richardson
,
J.
Coleman
, and
A.
Chatterjee
,
IEEE Electron Device Lett.
8
,
347
(
1987
).
9.
R. B.
Fair
and
H. W.
Wivell
,
IEEE Trans. Electron Devices
23
,
512
(
1976
).
10.
Q.
Zhang
,
W.
Zhao
, and
A.
Seabaugh
,
IEEE Electron Device Lett.
27
,
297
(
2006
).
11.
K.
Boucart
and
A.
Ionescu
,
IEEE Trans. Electron Devices
54
,
1725
(
2007
).
12.
D.
Jimenez
,
X.
Cartoix
,
E.
Miranda
,
J.
Sune
,
F. A.
Chaves
, and
S.
Roche
,
J. Comput. Electron.
5
,
361
(
2006
).
13.
E. O.
Kane
,
J. Phys. Chem. Solids
1
,
249
(
1957
).
14.
R. A.
Logan
and
A. G.
Chynoweth
,
Phys. Rev.
131
,
89
(
1963
).
15.
L.
Wang
and
P.
Asbeck
,
IEEE Nanotechnology Materials Device Conference
,
2009
, p.
196
.
16.
H.
Flietner
,
Phys. Status Solidi
54
,
201
(
1972
).
17.
D.
Jena
,
T.
Fang
,
Q.
Zhang
, and
H.
Xing
,
Appl. Phys. Lett.
93
,
112106
(
2008
).
18.
J.
Guo
,
S.
Datta
,
M.
Lundstrom
, and
M. P.
Anantram
,
Int. J. Multiscale Comp. Eng.
2
,
257
(
2004
).
19.
L.
Brey
and
H. A.
Fertig
,
Phys. Rev. B
73
,
235411
(
2006
).
20.
D.
Gunlycke
and
C. T.
White
,
Phys. Rev. B
77
,
115116
(
2008
).
21.
D. P.
DiVincenzo
and
E. J.
Mele
,
Phys. Rev. B
29
,
1685
(
1984
).
22.
W.
Vandenberghe
,
B.
Soree
,
W.
Magnus
, and
G.
Groeseneken
,
J. Phys.: Conf. Ser.
193
,
012111
(
2009
).
23.
K. H.
Gundlach
and
J. G.
Simmons
,
Thin Solid Films
4
,
61
(
1969
).
You do not currently have access to this content.