Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials.

1.
V.
Sundström
and
T.
Gillbro
,
Appl. Phys. B: Lasers Opt.
31
,
235
(
1983
).
2.
N.
Michailov
,
T.
Deligeorgiev
,
V.
Petrov
, and
I.
Tomov
,
Opt. Commun.
70
,
137
(
1989
).
3.
W.
Sibbett
,
J. R.
Taylor
, and
D.
Welford
,
IEEE J. Quantum Electron.
17
,
500
(
1981
).
4.
R.
Berera
,
R.
Van Grondelle
, and
J. T. M.
Kennis
,
Photosynth. Res.
101
,
105
(
2009
).
5.
C.
Yan
,
M.
Jiong
,
Z.
Rong-Yi
,
L.
Jun-Jun
,
Q.
Shi-Xiong
, and
C.
Ji-Yao
,
Chin. Phys. Lett.
21
,
1636
(
2004
).
6.
T.
Dartigalongue
,
C.
Niezborala
, and
F.
Hache
,
Phys. Chem. Chem. Phys.
9
,
1611
(
2007
).
7.
C.
Zang
,
J. A.
Stevens
,
J. J.
Link
,
L.
Guo
,
L.
Wang
, and
D.
Zhong
,
J. Am. Chem. Soc.
131
,
2846
(
2009
).
8.
W.
Demtroder
,
Laser Spectroscopy: Experimental Techniques
(
Springer
,
Berlin
,
2008
), Vol.
2
, Chap. 6.
9.
G.
Statkutė
,
I.
Mikulskas
,
R.
Tomasiunas
, and
A.
Jagminas
,
J. Appl. Phys.
105
,
113519
(
2009
).
10.
M.
Tomita
and
M.
Matsuoka
,
J. Opt. Soc. Am. B
3
,
560
(
1986
).
11.
P.
Fu
,
Q.
Jiang
,
X.
Mi
, and
Z.
Yu
,
Phys. Rev. Lett.
88
,
113902
(
2002
).
13.
S.
Hu
,
K.
Maslov
, and
L. V.
Wang
,
Opt. Express
17
,
7688
(
2009
).
14.
A. M.
Bonch-Bruevich
,
T. K.
Razumova
, and
I. O.
Starobogatov
,
Opt. Spectrosc.
42
,
82
(
1977
).
15.
C.
Tam
and
C. K. N.
Patel
,
Nature (London)
280
,
304
(
1979
).
16.
P.
Repond
and
M. W.
Sigrist
,
Appl. Opt.
35
,
4065
(
1996
).
17.
D. C.
Dumitras
,
D. C.
Dutu
,
C.
Matei
,
A. M.
Magureanu
,
M.
Petrus
, and
C.
Popa
,
J. Optoelectron. Adv. Mater.
9
,
3655
(
2007
).
18.
R. C.
Issac
,
S. S.
Harilal
,
G. K.
Varier
,
C. V.
Bindhu
,
V. P. N.
Nampoori
, and
C. P. G.
Vallabhan
,
Opt. Eng.
36
,
332
(
1997
).
19.
L. V.
Wang
and
H.
Wu
,
Biomedical Optics—Principles and Imaging
(
Wiley
,
Hoboken
,
2007
).
20.
E.
Siegman
,
Lasers
(
University Science Books
,
Mill Valley
,
1986
), Chap. 7.
21.
W. E.
Moerner
and
D. P.
Frommm
,
Rev. Sci. Instrum.
74
,
3597
(
2003
).
You do not currently have access to this content.