We report on an atmospheric-pressure dc microplasma that can be used to passivate silicon nanocrystals (SiNCs) in ethanol and that stabilizes their optoelectronic properties. We show that microplasma processing enhances the SiNCs photoluminescence intensity by factor of more than ten times and 80nm redshift of its maximum. The microplasma induces the replacement of hydrogen terminations with hydroxyl-/organic-based bonds. The resulting surface characteristics are responsible for the formation of conductive and stable SiNCs self-organized assemblies extending over 0.5 mm after dewetting on a substrate.

1.
N.
Shirahata
,
T.
Hasegawa
,
Y.
Sakka
, and
T.
Tsuruoka
,
Small
6
,
915
(
2010
).
2.
U.
Kortshagen
,
J. Phys. D: Appl. Phys.
42
,
113001
(
2009
).
3.
R. M.
Sankaran
,
D.
Holunga
,
R. C.
Flagan
, and
K. P.
Giapis
,
Nano Lett.
5
,
537
(
2005
).
4.
T.
Hawa
and
M. R.
Zachariah
,
Phys. Rev. B
69
,
035417
(
2004
).
5.
A.
Gupta
,
M. T.
Swihart
, and
H.
Wiggers
,
Adv. Funct. Mater.
19
,
696
(
2009
).
6.
S.
Sato
and
M. T.
Swihart
,
Chem. Mater.
18
,
4083
(
2006
).
7.
L.
Pavesi
,
L.
Dal Negro
,
C.
Mazzoleni
,
G.
Franzò
, and
F.
Priolo
,
Nature (London)
408
,
440
(
2000
).
8.
M.
Fuechsle
,
S.
Mahapatra
,
F. A.
Zwanenburg
,
M.
Friesen
,
M. A.
Eriksson
, and
M. Y.
Simmons
,
Nat. Nanotechnol.
5
,
502
(
2010
).
9.
D.
Kovalev
and
M.
Fujii
,
Adv. Mater.
17
,
2531
(
2005
).
10.
D.
Timmerman
,
I.
Izeddin
,
P.
Stallinga
,
I. N.
Yassevich
, and
T.
Gregorkiewicz
,
Nat. Photonics
2
,
105
(
2008
).
11.
S. Y.
Huang
,
A. D.
Arulsamy
,
M.
Xu
,
S.
Xu
,
U.
Cvelbar
,
M.
Mozetic
, and
K.
Ostrikov
,
Phys. Plasmas
16
,
123504
(
2009
).
12.
V.
Švrček
,
A.
Slaoui
, and
J. -C.
Muller
,
J. Appl. Phys.
95
,
3158
(
2004
).
13.
S.
Prezioso
,
S. M.
Hossain
,
A.
Anopchenko
,
L.
Pavesi
,
M.
Wang
,
G.
Pucker
, and
P.
Bellutti
,
Appl. Phys. Lett.
94
,
062108
(
2009
).
14.
15.
C. -Y.
Liu
,
Z. C.
Holman
, and
U. R.
Kortshagen
,
Adv. Funct. Mater.
20
,
2157
(
2010
).
16.
M.
Sykora
,
A. Y.
Koposov
,
J. A.
McGuire
,
R. K.
Schulze
,
O.
Tretiak
,
J. M.
Pietryga
, and
V. I.
Klimov
,
ACS Nano
4
,
2021
(
2010
).
17.
D.
Kovalev
,
H.
Heckler
,
G.
Polisski
, and
F.
Koch
,
Phys. Status Solidi B
215
,
871
(
1999
).
18.
V.
Švrček
,
D.
Mariotti
,
K.
Kalia
, and
M.
Kondo
,
Chem. Phys. Lett.
478
,
224
(
2009
).
19.
Z.
Zhou
,
L.
Brus
, and
R.
Friesner
,
Nano Lett.
3
,
163
(
2003
).
20.
V.
Švrček
,
D.
Mariotti
, and
M.
Kondo
,
Opt. Express
17
,
520
(
2009
).
21.
D.
Mariotti
and
R. M.
Sankaran
,
J. Phys. D: Appl. Phys.
43
,
323001
(
2010
).
22.
D.
Mariotti
,
D H.
Lindstrom
,
A. C.
Bose
, and
K.
Ostrikov
,
Nanotechnology
19
,
495302
(
2008
).
23.
C. M.
Richmonds
and
R. M.
Sankaran
,
Appl. Phys. Lett.
93
,
131501
(
2008
).
24.
D.
Xu
,
L.
Sun
,
H.
Li
,
L.
Zhang
,
G.
Guo
,
X.
Zhao
, and
L.
Gui
,
New J. Chem.
27
,
300
(
2003
).
25.
G.
Lucovsky
,
M. J.
Manitini
,
J. K.
Srivastava
, and
E. A.
Irene
,
J. Vac. Sci. Technol. B
5
,
530
(
1987
).
26.
M.
Orzol
,
I.
Martin
,
J.
Kocisek
,
I.
Dabkowska
,
J.
Langer
, and
E.
Illenberger
,
Phys. Chem. Chem. Phys.
9
,
3424
(
2007
).
27.
D.
Mariotti
,
Y.
Shimizu
,
T.
Sasaki
, and
N.
Koshizaki
,
Appl. Phys. Lett.
89
,
201502
(
2006
).
28.
R.
Guerra
and
S.
Ossicini
,
Phys. Rev. B
81
,
245307
(
2010
).
You do not currently have access to this content.