The concept of the transport energy (TE) has proven to be one of the most powerful theoretical approaches to describe charge transport in organic semiconductors. In the recent paper L. Li, G. Meller, and H. Kosina [Appl. Phys. Lett.92, 013307 (2008)] have studied the effect of the partially filled localized states on the position of the TE level. We show that the position of the TE is essentially different to the one suggested by L. Li, G. Meller, and H. Kosina [Appl. Phys. Lett.92, 013307 (2008)] We further modify the standard TE approach taking into account the percolation nature of the transport path. Our calculations show that the TE becomes dependent on the concentration of charge carriers n at much higher n values than those, at which the carrier mobility already strongly depends on n. Hence the calculations of the concentration-dependent carrier mobility cannot be performed within the approach, in which only the concentration dependence of the TE is taken into account.

1.
H.
Bässler
,
Phys. Status Solidi B
175
,
15
(
1993
).
2.
P. M.
Borsenberger
,
E. H.
Magin
,
M. D.
VanAuweraer
, and
F. C. D.
Schryver
,
Phys. Status Solidi A
49
,
9
(
1993
).
3.
M.
Pope
and
C. E.
Swenberg
,
Electronic Processes in Organic Crystals and Polymers
(
Oxford University Press
,
Oxford
,
1999
).
4.
Semiconducting Polymers: Chemistry, Physics and Engineering
, edited by
G.
Hadziioannou
and
P. F.
van Hutten
(
Wiley
,
New York
,
2000
), Vol.
2
.
5.
Physics of Organic Semiconductors
, edited by
W.
Brütting
(
Wiley
,
New York
,
2005
).
6.
Charge Transport in Disordered Solids with Applications in Electronics
, edited by
S.
Baranovski
(
Wiley
,
New York
,
2006
).
7.
R.
Schmechel
,
Phys. Rev. B
66
,
235206
(
2002
).
8.
A.
Miller
and
E.
Abrahams
,
Phys. Rev.
120
,
745
(
1960
).
9.
B. I.
Shklovskiĭ
and
A. L.
Efros
,
Electronic Properties of Doped Semiconductors
(
Springer
,
New York
,
1984
).
10.
M.
Grünewald
and
P.
Thomas
,
Phys. Status Solidi B
94
,
125
(
1979
).
12.
S. D.
Baranovskii
,
P.
Thomas
, and
G. J.
Adriaenssens
,
J. Non-Cryst. Solids
190
,
283
(
1995
).
13.
A. J.
Mozer
,
N. S.
Sariciftci
,
A.
Pivrikas
,
R.
Österbacka
,
G.
Juška
,
L.
Brassat
, and
H.
Bässler
,
Phys. Rev. B
71
,
035214
(
2005
).
14.
C.
Tanase
,
E. J.
Meijer
,
P. W. M.
Blom
, and
D. M.
de Leeuw
,
Phys. Rev. Lett.
91
,
216601
(
2003
).
15.
W. F.
Pasveer
,
J.
Cottaar
,
C.
Tanase
,
R.
Coehoorn
,
P. A.
Bobbert
,
P. W. M.
Blom
,
D. M.
de Leeuw
, and
M. A. J.
Michels
,
Phys. Rev. Lett.
94
,
206601
(
2005
).
16.
S. D.
Baranovskii
,
H.
Cordes
,
F.
Hensel
, and
G.
Leising
,
Phys. Rev. B
62
,
7934
(
2000
).
17.
S.
Baranovskii
,
I.
Zvyagin
,
H.
Cordes
,
S.
Yamasaki
, and
P.
Thomas
,
Phys. Status Solidi B
230
,
281
(
2002
).
18.
R.
Coehoorn
,
W. F.
Pasveer
,
P. A.
Bobbert
, and
M. A. J.
Michels
,
Phys. Rev. B
72
,
155206
(
2005
).
19.
L.
Li
,
G.
Meller
, and
H.
Kosina
,
Appl. Phys. Lett.
92
,
013307
(
2008
).
20.
G.
Schönherr
,
H.
Bässler
, and
M.
Silver
,
Philos. Mag. B
44
,
369
(
1981
).
21.
B.
Hartenstein
and
H.
Bässler
,
J. Non-Cryst. Solids
190
,
112
(
1995
).
22.
L.
Fumagalli
,
M.
Binda
,
D.
Natali
,
M.
Sampietro
,
E.
Salmoiraghi
, and
P. D.
Gianvincenzo
,
J. Appl. Phys.
104
,
084513
(
2008
).
23.
S. D.
Baranovskii
,
T.
Faber
,
F.
Hensel
, and
P.
Thomas
,
J. Phys.: Condens. Matter
9
,
2699
(
1997
).
24.
O.
Rubel
,
S. D.
Baranovskii
,
P.
Thomas
, and
S.
Yamasaki
,
Phys. Rev. B
69
,
014206
(
2004
).
25.
F.
Neumann
,
Y. A.
Genenko
, and
H.
von Seggern
,
J. Appl. Phys.
99
,
013704
(
2006
).
You do not currently have access to this content.