The authors report on “graphene-like” mechanical exfoliation of single-crystal Bi2Te3 films and thermoelectric characterization of the stacks of such films. Thermal conductivity of the resulting “pseudosuperlattices” was measured by the “hot disk” and “laser flash” techniques. The room temperature in-plane (cross-plane) thermal conductivity of the stacks decreases by a factor of 2.4 (3.5) as compared to bulk. The thermal conductivity reduction with preserved electrical properties leads to strong increase in the thermoelectric figure of merit. It is suggested that the film thinning to few-quintuples and tuning of the Fermi level can help in achieving the topological-insulator surface transport regime with an extraordinary thermoelectric efficiency.

1.
H. J.
Goldsmid
,
Thermoelectric Refrigeration
(
Plenum
,
New York
,
1964
);
D. M.
Rowe
,
CRC Book on Thermoelectrics
(
CRC
,
Boca Raton
,
1995
).
2.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
X.
Sun
,
Z.
Zhang
,
S. B.
Cronin
, and
T.
Koga
,
Phys. Solid State
41
,
679
(
1999
).
3.
G.
Chen
, “
Heat Transfer in Micro- and Nanoscale Photonic Devices
,” Annu. Rev. Heat Transfer, Ed., C. L. Tien, Vol.
VII
,
1996
, pp.
1
57
.
4.
A.
Balandin
and
K. L.
Wang
,
Phys. Rev. B
58
,
1544
(
1998
);
A.
Balandin
and
K. L.
Wang
,
J. Appl. Phys.
84
,
6149
(
1998
);
A.
Balandin
,
J. Nanosci. Nanotechnol.
5
,
7
(
2005
).
5.
For review, see
M. Z.
Hasan
and
C. L.
Kane
, arXiv:1002.3895 (unpublished);
X. -L.
Qi
and
S. -C.
Zhang
, arXiv:1008.2026 (unpublished).
6.
7.
P.
Ghaemi
,
R. S. K.
Mong
, and
J. E.
Moore
, In-plane transport and enhanced TE in thin films of the TIs Bi2Te3 and Bi2Se3, arXiv:1002.1341 (unpublished);
Independently,
F.
Zahid
and
R.
Lake
(UCR) predicted ZT of up to 7.2 at RT for Bi2Te3 films of certain thicknesses and doping densities, arXiv:1009.4512 (unpublished).
8.
D.
Teweldebrhan
,
V.
Goyal
, and
A. A.
Balandin
,
Nano Lett.
10
,
1209
(
2010
);
[PubMed]
D.
Teweldebrhan
,
V.
Goyal
,
M.
Rahman
, and
A. A.
Balandin
,
Appl. Phys. Lett.
96
,
053107
(
2010
).
9.
W.
Kullmann
,
J.
Geurts
,
W.
Richter
,
N.
Lehner
,
H.
Rauh
,
U.
Steigenberger
,
G.
Eichhorn
, and
R.
Geick
,
Phys. Status Solidi B
125
,
131
(
1984
);
W.
Richter
,
H.
Kohler
, and
C. R.
Becker
,
Phys. Status Solidi B
84
,
619
(
1977
).
10.
K. M. F.
Shahil
,
M. Z.
Hossain
,
D.
Teweldebrhan
, and
A. A.
Balandin
,
Appl. Phys. Lett.
96
,
153103
(
2010
).
11.
S. A.
Barnett
and
M.
Shinn
,
Annu. Rev. Mater. Sci.
24
,
481
(
1994
);
S.
Tamura
and
F.
Nori
,
Phys. Rev. B
41
,
7941
(
1990
).
12.
S. E.
Gustafsson
,
Rev. Sci. Instrum.
62
,
797
(
1991
).
13.
S.
Ghosh
,
D.
Teweldebrhan
,
J. R.
Morales
,
J. E.
Garay
, and
A. A.
Balandin
,
J. Appl. Phys.
106
,
113507
(
2009
);
R.
Ikkawi
,
N.
Amos
,
A.
Lavrenov
,
A.
Krichevsky
,
D.
Teweldebrhan
,
S.
Ghosh
,
A. A.
Balandin
,
D.
Litvinov
, and
S.
Khizroev
,
J. Nanoelectron. Optoelectron.
3
,
44
(
2008
).
14.
C. B.
Satterthwaite
and
R. W.
Ure
, Jr.
,
Phys. Rev.
108
,
1164
(
1957
).
15.
M. R.
Dirmyer
,
J.
Martin
,
G. S.
Nolas
,
A.
Sen
, and
J. V.
Badding
,
Small
5
,
933
(
2009
).
16.
C.
Chiritescu
,
C.
Mortensen
,
D. G.
Cahill
,
D.
Johnson
, and
P.
Zschack
,
J. Appl. Phys.
106
,
073503
(
2009
).
17.
O.
Ben-Yehuda
,
R.
Shuker
,
Y.
Gelbstein
,
Z.
Dashebsky
, and
M. P.
Dariel
,
J. Appl. Phys.
101
,
113707
(
2007
).
18.
D.
Cahill
,
S.
Watson
, and
R.
Pohl
,
Phys. Rev. B
46
,
6131
(
1992
).
You do not currently have access to this content.