High-performance Y2O3/In2O3-based transparent thin-film transistors were processed featuring low thermal budget. The device shows a field-effect mobility of 43.5cm2V1s1, a subthreshold swing of 0.28 V/decade, and an on/off current ratio of 108. These results are attributed to the high dielectric constant of Y2O3 and unique electronic structure of In2O3. Furthermore, the cubic phases of crystalline Y2O3 and In2O3 films have the identical crystal structure with a small lattice mismatch, which provides a well-defined dielectric/semiconductor interface for the optimal performance.

2.
R. L.
Hoffman
,
B. J.
Norris
, and
J. F.
Wager
,
Appl. Phys. Lett.
82
,
733
(
2003
).
3.
N. L.
Dehuff
,
E. S.
Kettenring
,
D.
Hong
,
H. Q.
Chiang
,
J. F.
Wager
,
R. L.
Hoffman
,
C. -H.
Park
, and
D. A.
Keszler
,
J. Appl. Phys.
97
,
064505
(
2005
).
4.
S.
Masuda
,
K.
Kitamura
,
Y.
Okumura
,
S.
Miyatake
,
H.
Tabata
, and
T.
Kawai
,
J. Appl. Phys.
93
,
1624
(
2003
).
5.
P. F.
Carcia
,
R. S.
McLean
,
M. H.
Reilly
, and
G.
Nunes
,
Appl. Phys. Lett.
82
,
1117
(
2003
).
6.
L.
Wang
,
M. H.
Yoon
,
G.
Lu
,
Y.
Yang
,
A.
Facchetti
, and
T. J.
Marks
,
Nature Mater.
5
,
893
(
2006
).
7.
Dhananjay
and
C. W.
Chu
,
Appl. Phys. Lett.
91
,
132111
(
2007
).
8.
Dhananjay
,
S. S.
Cheng
,
C. Y.
Yang
,
C. -W.
Ou
,
Y. -C.
Chuang
,
M. C.
Wu
, and
C. -W.
Chu
,
J. Phys. D: Appl. Phys.
41
,
092006
(
2008
).
9.
H.
Yabuta
,
M.
Sano
,
K.
Abe
,
T.
Aiba
,
T.
Den
,
H.
Kumomi
,
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Appl. Phys. Lett.
89
,
112123
(
2006
).
10.
H.
Odaka
,
Y.
Shigesato
,
T.
Murakami
, and
S.
Iwata
,
Jpn. J. Appl. Phys.
40
,
3231
(
2001
).
11.
P. D. C.
King
,
T. D.
Veal
,
F.
Fuchs
,
Ch. Y.
Wang
,
D. J.
Payne
,
A.
Bourlange
,
H.
Zhang
,
G. R.
Bell
,
V.
Cimalla
,
O.
Ambacher
,
R. G.
Egdell
,
F.
Bechstedt
, and
C. F.
McConville
,
Phys. Rev. B
79
,
205211
(
2009
).
12.
S. Q.
Zhang
and
R. F.
Xiao
,
J. Appl. Phys.
83
,
3842
(
1998
).
13.
J.
Robertson
,
Eur. Phys. J.: Appl. Phys.
28
,
265
(
2004
).
14.
M.
Gurvitch
,
L.
Manchanda
, and
J. M.
Gibson
,
Appl. Phys. Lett.
51
,
919
(
1987
).
15.
L.
Manchanda
and
M.
Gurvitch
,
IEEE Electron Device Lett.
9
,
180
(
1988
).
16.
Y. J.
Cho
,
J. H.
Shin
,
S. M.
Bobade
,
Y. -B.
Kim
, and
D. -K.
Choi
,
Thin Solid Films
517
,
4115
(
2009
).
17.
It is assumed that the vacuum levels of the Y2O3 and In2O3 layer are continuous. Electron affinity energies of Y2O3 and In2O3 are cited to be 1.7 eV and 4.3 eV, respectively. Hence, it can be shown that the conduction band offset (ΔEC) of the Y2O3/In2O3 interface are roughly equal to 2.6 eV.
18.
The IZO electrode materials were deposited by rf magnetron co-sputtering in pure Ar ambient applying a ZnO target and a In2O3 target with powers of 100 W and 70 W, respectively. The resistivity of the fabricated IZO films is around 5×103Ωcm.
19.
X. J.
Wang
,
L. D.
Zhang
,
J. P.
Zhang
,
G.
He
,
M.
Liu
, and
L. Q.
Zhu
,
Mater. Lett.
62
,
4235
(
2008
).
20.
P.
de Rouffignac
,
J. S.
Park
, and
R. G.
Gordon
,
Chem. Mater.
17
,
4808
(
2005
).
21.
M.
Harris
,
H. A.
Macleod
,
S.
Ogura
,
E.
Pelletier
, and
B.
Vidal
,
Thin Solid Films
57
,
173
(
1979
).
22.
Handbook of X-ray Photoelectron Spectroscopy
, edited by
J.
Chastain
(
Perkin-Elmer
,
Eden Prairie, MN
,
1992
).
23.
G. M.
Ingo
and
G.
Marletta
,
Nucl. Instrum. Methods Phys. Res. B
116
,
440
(
1996
).
24.
J. P.
Duraud
,
F.
Jollet
,
N.
Thromat
,
M.
Gautier
,
P.
Maire
,
C. L.
Gressus
, and
E.
Dartyge
,
J. Am. Ceram. Soc.
73
,
2467
(
1990
).
25.
R. B. M.
Cross
,
M. M.
De Souza
,
S. C.
Deane
, and
N. D.
Young
,
IEEE Trans. Electron Devices
55
,
1109
(
2008
).
You do not currently have access to this content.