We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of ηp=14.4±0.4% and ηp=14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

1.
E.
Yablonovitch
,
T.
Gmitter
,
J. P.
Harbison
, and
R.
Bhat
,
Appl. Phys. Lett.
51
,
2222
(
1987
).
2.
G. J.
Bauhuis
,
P.
Mulder
,
E. J.
Haverkamp
,
J. J.
Schermer
,
E.
Bongers
,
G.
Oomen
,
W.
Kostler
, and
G.
Strobl
,
Prog. Photovoltaics
18
,
155
(
2010
).
3.
R.
Tatavarti
,
G.
Hillier
,
G.
Martin
,
A.
Wibowo
,
R.
Navaratnarajah
,
F.
Tuminello
,
D.
Hertkorn
,
M.
Disabb
,
C.
Youtsey
,
D.
McCallum
, and
N.
Pan
,
34th IEEE Photovoltaic Specialists Conference
,
2009
, p.
2065
.
4.
R.
Tatavarti
,
G.
Hillier
,
A.
Dzankovic
,
G.
Martin
,
F.
Tuminello
,
R.
Navaratnarajah
,
G.
Du
,
D. P.
Vu
, and
N.
Pan
,
33rd IEEE Photovoltaic Specialists Conference
,
2008
, Vol.
324
, p.
2206
.
5.
T.
Takamoto
,
T.
Kodama
,
H.
Yamaguchi
,
T.
Agui
,
N.
Takahashi
,
H.
Washio
,
T.
Hisamatsu
,
M.
Kaneiwa
,
K.
Okamoto
,
M.
Imaizumi
, and
K.
Kibe
,
Conference Record of the 2006 IEEE Fourth World Conference on Photovoltaic Energy Conversion
,
2006
, Vols.
1 and 2
, p.
1769
.
6.
H.
Yamaguchi
,
N.
Takahashi
,
T.
Kodama
,
R.
Izichi
,
H.
Washio
,
K.
Nakamura
,
T.
Takamoto
,
M.
Imaizumi
,
M.
Takahashi
,
K.
Shimazaki
, and
K.
Kibe
,
33rd IEEE Photovoltaic Specialists Conference
,
2008
, p.
1474
.
7.
P. R.
Hageman
,
G. J.
Bauhuis
,
A.
vanGeelen
,
P. C.
vanRijsingen
,
J. J.
Shermer
, and
L. J.
Giling
,
25th IEEE Photovoltaic Specialists Conference
,
1996
, p.
57
.
8.
P. R.
Hageman
,
A.
Vangeelen
,
R. A. J.
Thomeer
, and
L. J.
Giling
,
IEEE Photovoltaic Specialists Conference
,
1994
, Vol.
2
,
1910
.
9.
A.
Plößl
and
G.
Krauter
,
Mater. Sci. Eng. R.
25
,
1
(
1999
).
10.
X.
Li
,
M. W.
Wanlass
,
T. A.
Gessert
,
K. A.
Emery
, and
T. J.
Coutts
,
Appl. Phys. Lett.
54
,
2674
(
1989
).
11.
J. W.
Raring
,
E. J.
Skogen
,
S. P.
Denbaars
, and
L. A.
Coldren
,
J. Cryst. Growth
273
,
26
(
2004
).
12.
K. T.
Shiu
,
J.
Zimmerman
,
H. Y.
Wang
, and
S. R.
Forrest
,
Appl. Phys. Lett.
95
,
223503
(
2009
).
13.
G. C.
DeSalvo
,
W. F.
Tseng
, and
J.
Comas
,
J. Electrochem. Soc.
139
,
831
(
1992
).
14.
S. S.
Hegedus
and
W. N.
Shafarman
,
Prog. Photovoltaics
12
,
155
(
2004
).
You do not currently have access to this content.