We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50100μm. Capillarity is a particularly effective mechanism since surface tension forces dominate over bulk forces at small scales. The spontaneous evaporation of water forms the driving mechanism for this microfabrication technique. Therefore the actuating liquid disappears in the final structure. A model describing the elastocapillary interaction of the folding process is compared with experiments. By tailoring the elastic and capillary properties a variety of three-dimensional micro-objects can be realized.

1.
G. T. A.
Kovacs
,
K.
Petersen
, and
M.
Albin
,
Anal. Chem.
68
,
407A
(
1996
).
2.
M. J.
Madou
,
Fundamentals of Microfabrication
(
CRC
,
New York
,
1997
).
3.
H. J.
In
,
S.
Kumar
,
Y.
Shao-Horn
, and
G.
Barbastathis
,
Appl. Phys. Lett.
88
,
083104
(
2006
).
4.
S. T.
Brittain
,
O. J. A.
Schueller
,
H. K.
Wu
,
S.
Whitesides
, and
G. M.
Whitesides
,
J. Phys. Chem. B
105
,
347
(
2001
).
5.
H.
Okuzaki
,
T.
Saido
,
H.
Suzuki
,
Y.
Hara
, and
H.
Yan
,
J. Phys.: Conf. Ser.
127
,
012001
(
2008
).
6.
N.
Bassik
,
G. M.
Stern
,
M.
Jamal
, and
D. H.
Gracias
,
Adv. Mater. (Weinheim, Ger.)
20
,
4760
(
2008
).
7.
W. J.
Arora
,
A. J.
Nichol
,
H. I.
Smith
, and
G.
Barbastathis
,
Appl. Phys. Lett.
88
,
053108
(
2006
).
8.
V. Y.
Prinz
,
V. A.
Seleznev
,
A. K.
Gutakovsky
,
A. V.
Chehovskiy
,
V. V.
Preobrazhenskii
,
M. A.
Putyato
, and
T. A.
Gavrilova
,
Physica E (Amsterdam)
6
,
828
(
2000
).
9.
T. G.
Leong
,
A. M.
Zarafshar
, and
D. H.
Gracias
,
Small
6
,
792
(
2010
).
10.
N.
Bassik
,
G. M.
Stern
, and
D. H.
Gracias
,
Appl. Phys. Lett.
95
,
091901
(
2009
).
11.
C.
Py
,
P.
Reverdy
,
L.
Doppler
,
J.
Bico
,
B.
Roman
, and
C. N.
Baroud
,
Phys. Rev. Lett.
98
,
156103
(
2007
).
12.
R. R. A.
Syms
,
E. M.
Yeatman
,
V. M.
Bright
, and
G. M.
Whitesides
,
J. Micro/Nanolith. MEMS MOEMS
12
,
4
(
2003
).
13.
J. H.
Cho
and
D. H.
Gracias
,
Nano Lett.
9
,
4049
(
2009
).
14.
J. H.
Cho
,
S.
Hu
, and
D. H.
Gracias
,
Appl. Phys. Lett.
93
,
043505
(
2008
).
15.
T. G.
Leong
,
P. A.
Lester
,
T. L.
Koh
,
E. K.
Call
, and
D. H.
Gracias
,
Langmuir
23
,
8747
(
2007
).
16.
J. F.
Oliver
,
C.
Huh
, and
S. G. J.
Mason
,
J. Colloid Interface Sci.
59
,
568
(
1977
).
17.
L.
Landau
and
E.
Lifschitz
,
Theory of Elasticity
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1986
).
18.
E.
de Langre
,
C. N.
Baroud
, and
P.
Reverdy
,
J. Fluids Struct.
26
,
205
(
2010
).
19.
N. R.
Tas
,
T.
Sonnenberg
,
H. V.
Jansen
,
R.
Legtenberg
, and
M.
Elwenspoek
,
J. Micromech. Microeng.
6
,
385
(
1996
).
20.
C. H.
Mastrangelo
and
C. H.
Hsu
,
J. Microelectromech. Syst.
2
,
33
(
1993
).
21.
R.
Maboudian
and
R. T.
Howe
,
J. Vac. Sci. Technol. B
15
,
1
(
1997
).
22.
B.
Bhushan
,
J. Vac. Sci. Technol. B
21
,
2262
(
2003
).
23.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic
,
London
,
1992
).
You do not currently have access to this content.