The authors report on “graphene-like” exfoliation of the large-area crystalline films and ribbons of bismuth telluride with the thicknesses of a few atoms. It is demonstrated that Bi2Te3 crystal can be mechanically separated into its building blocks—Te–Bi–Te–Bi–Te atomic fivefolds—with the thickness of 1nm and even further—to subunits with smaller thicknesses. The atomically-thin films can be structured into suspended crystalline ribbons providing quantum confinement in two dimensions. The quasi two-dimensional crystals of bismuth telluride revealed high electrical conductivity and low thermal conductivity. The proposed atomic-layer engineering of bismuth telluride opens up a principally new route for drastic enhancement of the thermoelectric figure of merit.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature (London)
438
,
197
(
2005
).
3.
Y.
Zhang
,
J. W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature (London)
438
,
201
(
2005
).
4.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
,
902
(
2008
);
[PubMed]
S.
Ghosh
,
I.
Calizo
,
D.
Teweldebrhan
,
E. P.
Pokatilov
,
D. L.
Nika
,
A. A.
Balandin
,
W.
Bao
,
F.
Miao
, and
C. N.
Lau
,
Appl. Phys. Lett.
92
,
151911
(
2008
).
5.
D. L.
Nika
,
S.
Ghosh
,
E. P.
Pokatilov
, and
A. A.
Balandin
,
Appl. Phys. Lett.
94
,
203103
(
2009
);
D. L.
Nika
,
E. P.
Pokatilov
,
A. S.
Askerov
, and
A. A.
Balandin
,
Phys. Rev. B
79
,
155413
(
2009
).
6.
R. R.
Nair
,
P.
Blake
,
A. N.
Grigorenko
,
K. S.
Novoselov
,
T. J.
Booth
,
T.
Stauber
,
N. M. R.
Peres
, and
A. K.
Geim
,
Science
320
,
1308
(
2008
).
7.
M.
Dresselhaus
,
G.
Dresselhaus
,
X.
Sun
,
Z.
Zhang
,
S.
Cronin
, and
T.
Koga
,
Phys. Solid State
41
,
679
(
1999
).
8.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
12727
(
1993
).
10.
A.
Balandin
and
K. L.
Wang
,
Phys. Rev. B
58
,
1544
(
1998
).
11.
A.
Balandin
and
K. L.
Wang
,
J. Appl. Phys.
84
,
6149
(
1998
).
12.
W.
Richter
,
H.
Kohler
, and
C. R.
Becker
,
Phys. Status Solidi B
84
,
619
(
1977
).
13.
I.
Calizo
,
A. A.
Balandin
,
W.
Bao
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
7
,
2645
(
2007
);
[PubMed]
I.
Calizo
,
F.
Miao
,
W.
Bao
,
C. N.
Lau
, and
A. A.
Balandin
,
Appl. Phys. Lett.
91
,
071913
(
2007
).
14.
I.
Calizo
,
W.
Bao
,
F.
Miao
,
C. N.
Lau
, and
A. A.
Balandin
,
Appl. Phys. Lett.
91
,
201904
(
2007
);
I.
Calizo
,
I.
Bejenari
,
M.
Rahman
,
G.
Liu
, and
A. A.
Balandin
,
J. Appl. Phys.
106
,
043509
(
2009
).
15.
X. H.
Ji
,
X. B.
Zhao
,
Y. H.
Zhang
,
B. H.
Lu
, and
H. L.
Ni
,
Mater. Lett.
59
,
682
(
2005
).
16.
O.
Yamashita
and
S.
Tomiyoshi
,
Jpn. J. Appl. Phys., Part 1
42
,
492
(
2003
).
17.
W.
Xie
,
X.
Tang
,
Y.
Yan
,
Q.
Zhang
, and
T. M.
Tritt
,
J. Appl. Phys.
105
,
113713
(
2009
).
18.
J. P.
Fleurial
,
L.
Gailliard
, and
R.
Triboulet
,
J. Phys. Chem. Solids
49
,
1237
(
1988
).
19.
V. A.
Kulbachinskii
,
M.
Inoue
,
M.
Sasaki
,
H.
Negishi
,
W. X.
Gao
,
K.
Takase
,
Y.
Giman
,
P.
Lostak
, and
J.
Horak
,
Phys. Rev. B
50
,
16921
(
1994
).
20.
T. A.
Christakudi
,
S. K.
Plachkova
, and
G. C.
Christakudis
,
Phys. Status Solidi B
195
,
217
(
1996
).
21.
V.
Damodara Das
and
N.
Soundararajan
,
Phys. Rev. B
37
,
4552
(
1998
).
22.
I.
Bejenari
,
V.
Kantser
, and
A. A.
Balandin
, arXiv:0908.0624v2 (unpublished);
I.
Bejenari
and
V.
Kantser
,
Phys. Rev. B
78
,
115322
(
2008
).
23.
A.
Casian
,
I.
Sur
,
H.
Scherrer
, and
Z.
Dashevsky
,
Phys. Rev. B
61
,
15965
(
2000
).
You do not currently have access to this content.