Band structure of ferroelectric bismuth titanate is calculated by first-principles computations under the framework of density functional theory. Using the metal induced gap state model, the Schottky barrier height on Pt electrode is estimated to be as high as 1.26 eV, which indicates that the Schottky effect may not be the dominant conduction mechanism in bismuth titanate. By further comparisons with the experimental data, we conclude that the leakage current behavior of bismuth titanate films is dominated by bulk limited conduction mechanisms and can be reduced by better processing conditions or doping.

1.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
).
2.
F.
Yang
,
Y. C.
Zhou
,
M. H.
Tang
,
F.
Liu
,
Y.
Ma
,
X. J.
Zheng
,
W. F.
Zhao
,
H. Y.
Xu
, and
Z. H.
Sun
,
J. Phys. D: Appl. Phys.
42
,
072004
(
2009
).
3.
Y.
Noguchi
,
M.
Soga
,
M.
Takahashi
, and
M.
Miyayama
,
Jpn. J. Appl. Phys., Part 1
44
,
6998
(
2005
).
4.
N.
Setter
,
D.
Damjanovic
,
L.
Eng
,
G.
Fox
,
S.
Gevorgian
,
S.
Hong
,
A.
Kingon
,
H.
Kohlstedt
,
N. Y.
Park
,
G. B.
Stephenson
,
I.
Stolitchnov
,
A. K.
Taganstev
,
D. V.
Taylor
,
T.
Yamada
, and
S.
Streiffer
,
J. Appl. Phys.
100
,
051606
(
2006
).
5.
F.
Yang
,
M. H.
Tang
,
Y. C.
Zhou
,
F.
Liu
,
Y.
Ma
,
X. J.
Zheng
,
J. X.
Tang
,
H. Y.
Xu
,
W. F.
Zhao
,
Z. H.
Sun
, and
J.
He
,
Appl. Phys. Lett.
92
,
022908
(
2008
).
6.
T.
Watanabe
,
A.
Saiki
,
K.
Saito
, and
H.
Funakubo
,
J. Appl. Phys.
89
,
3934
(
2001
).
7.
H.
Irie
,
H.
Saito
,
S.
Ohkoshi
, and
K.
Hashimoto
,
Adv. Mater.
17
,
491
(
2005
).
8.
T.
Hashimoto
and
H.
Moriwake
,
Phys. Rev. B
78
,
092106
(
2008
).
9.
U.
Chon
,
H. M.
Jang
,
M. G.
Kim
, and
C. H.
Chang
,
Phys. Rev. Lett.
89
,
087601
(
2002
).
10.
E. K.
Choi
,
S. S.
Kim
,
J. K.
Kim
,
J. C.
Bae
,
W. J.
Kim
,
Y. I.
Lee
, and
T. K.
Song
,
Jpn. J. Appl. Phys., Part 1
43
,
237
(
2004
).
11.
H.
Uchida
,
I.
Okada
,
H.
Matsuda
,
T.
Iijima
,
T.
Watanabe
, and
H.
Funakubo
,
Integr. Ferroelectr.
52
,
41
(
2003
).
12.
A. R.
Chaudhuri
and
S. B.
Krupanidhi
,
J. Appl. Phys.
98
,
094112
(
2005
).
13.
A.
Shrinagar
,
A.
Garg
,
R.
Prasad
, and
A.
Sushil
,
Acta Crystallogr. A
64
,
368
(
2008
).
14.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
15.
J. P.
Perdew
,
K.
Bruke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
16.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
17.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
18.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
19.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
20.
A. D.
Rae
,
J. G.
Thompson
,
R. L.
Withers
, and
A. C.
Willis
,
Acta Crystallogr. B
46
,
474
(
1990
).
21.
L.
Pintilie
,
I.
Pintilie
, and
T.
Botila
,
Semicond. Sci. Technol.
14
,
928
(
1999
).
22.
Y.
Noguchi
,
T.
Goto
,
M.
Miyayama
,
A.
Hoshikawa
, and
T.
Kamiyama
,
J. Electroceram.
21
,
49
(
2008
).
23.
J.
Robertson
and
C. W.
Chen
,
Appl. Phys. Lett.
74
,
1168
(
1999
).
24.
S. J.
Clark
and
J.
Robertson
,
Appl. Phys. Lett.
90
,
132903
(
2007
).
25.
Y.
Lu
,
D. T.
Hoelzer
,
W. A.
Schulze
,
B.
Tuttle
, and
B. G.
Potter
,
Mater. Sci. Eng., B
39
,
41
(
1996
).
26.
J.
Robertson
,
J. Vac. Sci. Technol. B
18
,
1785
(
2000
).
27.
S. M.
Sze
,
Semiconductor Devices: Physics and Technology
, 2nd ed. (
Wiley
,
Singapore
,
2002
).
28.
M.
Sedlar
and
M.
Sayer
,
Ceram. Int.
22
,
241
(
1996
).
You do not currently have access to this content.