The role of secondary gas-phase reactions during plasma-enhanced chemical vapor deposition of microcrystalline silicon is a controversial subject. In this paper, we show that the enhancement of such reactions is associated with the improvement of material properties of absorber layers deposited at high constant rate. We detect powder, a product of secondary gas-phase reactions, via infrared laser absorption spectroscopy, laser light scattering, and optical emission spectroscopy. As the powder formation is increased, we measure a systematic improvement of device performance. This demonstrates that secondary gas-phase reactions are not detrimental to the material quality of microcrystalline silicon deposited at high rate.

1.
K.
Yamamoto
,
A.
Nakajima
,
M.
Yoshimi
,
T.
Sawada
,
S.
Fukuda
,
T.
Suezaki
,
M.
Ichikawa
,
Y.
Koi
,
M.
Goto
,
T.
Meguro
,
T.
Matsuda
,
M.
Kondo
,
T.
Sasaki
, and
Y.
Tawada
,
Prog. Photovoltaics
13
,
489
(
2005
).
2.
J.
Meier
,
R.
Flückiger
,
H.
Keppner
, and
A.
Shah
,
Appl. Phys. Lett.
65
,
860
(
1994
).
3.
F.
Finger
,
P.
Hapke
,
M.
Luysberg
,
R.
Carius
,
H.
Wagner
, and
M.
Sheib
,
Appl. Phys. Lett.
65
,
2588
(
1994
).
4.
A.
Shah
,
P.
Torres
,
R.
Tscharner
,
N.
Wyrsch
, and
H.
Keppner
,
Science
285
,
692
(
1999
).
5.
M.
Kondo
,
M.
Fukawa
,
L.
Guo
, and
A.
Matsuda
,
J. Non-Cryst. Solids
266–269
,
84
(
2000
).
6.
Y.
Nakano
,
S.
Goya
,
T.
Watanabe
,
N.
Yamashita
, and
Y.
Yonekura
,
Thin Solid Films
506–507
,
33
(
2006
).
7.
B.
Strahm
and
Ch.
Hollenstein
,
J. Appl. Phys.
107
,
023302
(
2010
).
8.
G.
Bano
,
P.
Horvath
,
K.
Rozsa
, and
A.
Gallagher
,
J. Appl. Phys.
98
,
013304
(
2005
).
9.
B.
Rech
,
T.
Roschek
,
T.
Repman
,
J.
Müller
,
R.
Schmitz
, and
W.
Appenzeller
,
Thin Solid Films
427
,
157
(
2003
).
10.
A.
Gordijn
,
L.
Hodakova
,
J. K.
Rath
, and
R. E. I.
Schropp
,
J. Non-Cryst. Solids
352
,
1868
(
2006
).
11.
Y.
Mai
,
S.
Klein
,
R.
Carius
,
J.
Wolff
,
A.
Lambertz
,
F.
Finger
, and
X.
Geng
,
J. Appl. Phys.
97
,
114913
(
2005
).
12.
G.
Bugnon
,
A.
Feltrin
,
F.
Meillaud
,
J.
Bailat
, and
C.
Ballif
,
J. Appl. Phys.
105
,
064507
(
2009
).
13.
P.
Roca i Cabarrocas
,
J. Non-Cryst. Solids
266–269
,
31
(
2000
).
14.
P.
Roca i Cabarrocas
,
Th.
Nguyen-Tran
,
Y.
Djeridane
,
A.
Abramov
,
E.
Johnson
, and
G.
Patriarche
,
J. Phys. D: Appl. Phys.
40
,
2258
(
2007
).
15.
J.
Perrin
,
J.
Schmitt
,
Ch.
Hollenstein
,
A. A.
Howling
, and
L.
Sansonnens
,
Plasma Phys. Controlled Fusion
42
,
B353
(
2000
).
16.
G.
Parascandolo
,
G.
Bugnon
,
A.
Feltrin
, and
C.
Ballif
,
Prog. Photovoltaics
18
,
257
(
2010
).
17.
R.
Bartlome
,
A.
Feltrin
, and
C.
Ballif
,
Appl. Phys. Lett.
94
,
201501
(
2009
).
18.
B.
Strahm
,
A. A.
Howling
,
L.
Sansonnens
, and
Ch.
Hollenstein
,
Plasma Sources Sci. Technol.
16
,
80
(
2007
).
19.
R.
Bartlome
,
B.
Strahm
,
Y.
Sinquin
,
A.
Feltrin
, and
C.
Ballif
, “
Laser applications in thin-film photovoltaics
,”
Appl. Phys. B: Lasers Opt.
(to be published).
20.
T.
Nagai
,
A. H. M.
Smets
, and
M.
Kondo
,
J. Non-Cryst. Solids
354
,
2096
(
2008
).
21.
A.
Bouchoule
,
A.
Plain
,
L.
Boufendi
,
J. Ph.
Blondeau
, and
C.
Laure
,
J. Appl. Phys.
70
,
1991
(
1991
).
22.
E. V.
Johnson
,
Y.
Djeridane
,
A.
Abramov
, and
P.
Roca i Cabarrocas
,
Plasma Sources Sci. Technol.
17
,
035029
(
2008
).
23.
A. A.
Fridman
,
L.
Boufendi
,
T.
Hbid
,
B. V.
Potapkin
, and
A.
Bouchoule
,
J. Appl. Phys.
79
,
1303
(
1996
).
24.
Ch.
Hollenstein
,
Plasma Phys. Controlled Fusion
42
,
R93
(
2000
).
You do not currently have access to this content.