Trapping and manipulation of microscale and nanoscale particles is demonstrated using the sole action of hydrodynamic forces. We developed an automated particle trap based on a stagnation point flow generated in a microfluidic device. The hydrodynamic trap enables confinement and manipulation of single particles in low viscosity (1–10 cP) aqueous solution. Using this method, we trapped microscale and nanoscale particles (100nm15μm) for long time scales (minutes to hours). We demonstrate particle confinement to within 1μm of the trap center, corresponding to a trap stiffness of 105104pN/nm.

1.
A.
Ashkin
,
J. M.
Dziedzic
,
J. E.
Bjorkholm
, and
S.
Chu
,
Opt. Lett.
11
,
288
(
1986
);
[PubMed]
K. C.
Neuman
and
S. M.
Block
,
Rev. Sci. Instrum.
75
,
2787
(
2004
);
[PubMed]
D. G.
Grier
,
Nature (London)
424
,
810
(
2003
);
A. H. J.
Yang
,
S. D.
Moore
,
B. S.
Schmidt
,
M.
Klug
,
M.
Lipson
, and
D.
Erickson
,
Nature (London)
457
,
71
(
2009
).
2.
P. Y.
Chiou
,
A. T.
Ohta
, and
M. C.
Wu
,
Nature (London)
436
,
370
(
2005
);
A. E.
Cohen
and
W. E.
Moerner
,
Appl. Phys. Lett.
86
,
093109
(
2005
);
A.
Ramos
,
H.
Morgan
,
N. G.
Green
, and
A.
Castellanos
,
J. Phys. D
31
,
2338
(
1998
);
M. D.
Armani
,
S. V.
Chaudhary
,
R.
Probst
, and
B.
Shapiro
,
J. Microelectromech. Syst.
15
,
945
(
2006
).
3.
4.
C.
Gosse
and
V.
Croquette
,
Biophys. J.
82
,
3314
(
2002
).
5.
H.
Lee
,
A. M.
Purdon
, and
R. M.
Westervelt
,
Appl. Phys. Lett.
85
,
1063
(
2004
).
6.
H. M.
Hertz
,
J. Appl. Phys.
78
,
4845
(
1995
);
M.
Evander
,
L.
Johansson
,
T.
Lilliehorn
,
J.
Piskur
,
M.
Lindvall
,
S.
Johansson
,
M.
Almqvist
,
T.
Laurell
, and
J.
Nilsson
,
Anal. Chem.
79
,
2984
(
2007
).
[PubMed]
7.
G. I.
Taylor
,
Proc. R. Soc. London
146
,
501
(
1934
);
B. J.
Bentley
and
L. G.
Leal
,
J. Fluid Mech.
167
,
219
(
1986
).
8.
T. T.
Perkins
,
D. E.
Smith
, and
S.
Chu
,
Science
276
,
2016
(
1997
).
9.
C. M.
Schroeder
,
H. P.
Babcock
,
E. S. G.
Shaqfeh
, and
S.
Chu
,
Science
301
,
1515
(
2003
).
10.
P. R.
Start
,
S. D.
Hudson
,
E. K.
Hobble
, and
K. B.
Migler
,
J. Colloid Interface Sci.
297
,
631
(
2006
).
11.
B. R.
Lutz
,
J.
Chen
, and
D. T.
Schwartz
,
Anal. Chem.
78
,
5429
(
2006
);
[PubMed]
C. M.
Lin
,
Y. S.
Lai
,
H. P.
Liu
,
C. Y.
Chen
, and
A. M.
Wo
,
Anal. Chem.
80
,
8937
(
2008
).
[PubMed]
12.
D.
Di Carlo
,
L. Y.
Wu
, and
L. P.
Lee
,
Lab Chip
6
,
1445
(
2006
);
[PubMed]
W. H.
Tan
and
S.
Takeuchi
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
1146
(
2007
);
[PubMed]
A. M.
Skelley
,
O.
Kirak
,
H.
Suh
,
R.
Jaenisch
, and
J.
Voldman
,
Nat. Methods
6
,
147
(
2009
).
[PubMed]
13.
J. C.
McDonald
and
G. M.
Whitesides
,
Acc. Chem. Res.
35
,
491
(
2002
);
[PubMed]
S. R.
Quake
and
A.
Scherer
,
Science
290
,
1536
(
2000
).
[PubMed]
14.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
), p.
xviii
.
15.
See supplementary material at http://dx.doi.org/10.1063/1.3431664 for movies of particle trapping, schematic of the microfluidic device, and power spectra of trapped particle motion along compressional axis.
16.
M. A.
Unger
,
H. P.
Chou
,
T.
Thorsen
,
A.
Scherer
, and
S. R.
Quake
,
Science
288
,
113
(
2000
).
17.
S. K.
Sia
and
G. M.
Whitesides
,
Electrophoresis
24
,
3563
(
2003
);
[PubMed]
T.
Thorsen
,
S. J.
Maerkl
, and
S. R.
Quake
,
Science
298
,
580
(
2002
);
[PubMed]
G. M.
Whitesides
,
E.
Ostuni
,
S.
Takayama
,
X. Y.
Jiang
, and
D. E.
Ingber
,
Annu. Rev. Biomed. Eng.
3
,
335
(
2001
).
[PubMed]

Supplementary Material

You do not currently have access to this content.