A nanogap electrode fabrication method was developed and nanogap electrode as small as 17 nm was achieved based on sacrificial spacer process and conventional lithography. We have transferred this method to lateral phase-change random access memory (PCRAM) device fabrication. The electrical characterizations of 4.6μm gap width using conventional lithography and 88 nm width based on this technology are shown. It is found that the threshold voltage and the dc power consumption are remarkably decreased due to nanogap electrode process. Our method cannot only improve the fabrication efficiency of PCRAM but also be easily transferred to other nanoelectronics applications.

1.
S. R.
Ovshinsky
,
Phys. Rev. Lett.
21
,
1450
(
1968
).
2.
S.
Lai
,
Tech. Dig. - Int. Electron Devices Meet.
2003
,
255
.
3.
D.
Krebs
,
S.
Raoux
,
C. T.
Rettner
,
G. W.
Burr
,
M.
Salinga
, and
M.
Wuttig
,
Appl. Phys. Lett.
95
,
082101
(
2009
).
4.
D. -S.
Suh
,
E.
Lee
,
K. H. P.
Kim
,
J. -S.
Noh
,
W. -C.
Shin
,
Y. -S.
Kang
,
C.
Kim
, and
Y.
Khang
,
Appl. Phys. Lett.
90
,
023101
(
2007
).
5.
M. H. R.
Lankhorst
,
B. W. S. M. M.
Ketelaars
, and
R. A. M.
Wolters
,
Nat. Mater.
4
,
347
(
2005
).
6.
S. B.
Kim
and
H. -S.
Philip Wong
,
IEEE Electron Device Lett.
28
,
697
(
2007
).
7.
C.
Lang
,
S. A.
Song
,
D. N.
Manh
, and
D. J. H.
Cockayne
,
Phys. Rev. B
76
,
054101
(
2007
).
8.
B. -J.
Bae
,
S. -H.
Hong
,
S. -Y.
Hwang
,
J. -Y.
Hwang
,
K. -Y.
Yang
, and
H.
Lee
,
Semicond. Sci. Technol.
24
,
075016
(
2009
).
9.
Y.
Yin
,
A.
Miyachi
,
D.
Niida
,
H.
Sone
, and
S.
Hosaka
,
Jpn. J. Appl. Phys., Part 2
45
,
L726
(
2006
).
10.
F.
Merget
,
D. H.
Kim
,
P. H.
Bolivar
, and
H.
Kurz
,
Microsyst. Technol.
13
,
169
(
2007
).
11.
Y.
Yin
,
H.
Sone
, and
S.
Hosaka
,
Microelectron. Eng.
84
,
2901
(
2007
).
12.
Y.
Yin
,
K.
Ota
,
N.
Higano
,
H.
Sone
, and
S.
Hosaka
,
IEEE Electron Device Lett.
29
,
876
(
2008
).
13.
H.
Yang
,
C. T.
Chong
,
R.
Zhao
,
H. K.
Lee
,
J.
Li
,
K. G.
Lim
, and
L.
Shi
,
Appl. Phys. Lett.
94
,
203110
(
2009
).
14.
D. T.
Castro
,
L.
Goux
,
G. A. M.
Hurkx
,
K.
Attenborough
,
R.
Delhougne
,
J.
Lisoni
,
F. J.
Jedema
,
M. A. A.
t Zandt
,
R. A. M.
Wolters
,
D. J.
Gravesteijn
,
M.
Verheijen
,
M.
Kaiser
,
R. G. R.
Weemaes
, and
D. J.
wouters
,
Proceedings of the IEEE Electron Devices Meeting
(
IEEE
,
New York
,
2007
), pp.
315
318
.
15.
C.
Kim
,
D.
Kang
,
T. -Y.
Lee
,
K. H. P.
Kim
,
Y. -S.
Kang
,
J.
Lee
,
S. -W.
Nam
,
K. -B.
Kim
, and
Y.
Khang
,
Appl. Phys. Lett.
94
,
193504
(
2009
).
16.
S.
Meister
,
D. T.
Schoen
,
M. A.
Topinka
,
A. M.
Minor
, and
Y.
Cui
,
Nano Lett.
8
,
4562
(
2008
).
17.
N.
Ohshima
,
J. Appl. Phys.
79
,
8357
(
1996
).
18.
S. -M.
Yoon
,
S. -W.
Jung
,
S. -Y.
Lee
,
Y. -S.
Park
, and
B. -G.
Yu
,
IEEE Electron Device Lett.
30
,
371
(
2009
).
19.
R. E.
Simpson
,
M.
Krbal
,
P.
Fons
,
A. V.
Kolobov
,
J.
Tominaga
,
T.
Uruga
, and
H.
Tanida
,
Nano Lett.
10
,
414
(
2010
).
20.
S. -H.
Hong
,
B. -J.
Bae
,
H.
Lee
,
M. -C.
Jung
, and
H. -J.
Shin
,
Semicond. Sci. Technol.
24
,
105025
(
2009
).
21.
S. -H.
Hong
,
B. -J.
Bae
, and
H.
Lee
,
Nanotechnology
21
,
025703
(
2010
).
22.
S. -M.
Yoon
,
S. -W.
Jung
,
S. -Y.
Lee
,
Y. -S.
Park
, and
B. -G.
Yu
,
Microelectron. Eng.
85
,
2334
(
2008
).
23.
M.
Nakata
,
T.
Edura
,
K.
Tsutsui
,
M.
Tokuda
,
H.
Onozato
,
T.
Kaneko
,
K.
Nagatsuma
,
M.
Morita
,
K.
Itaka
,
H.
Koinuma
, and
Y.
Wada
,
Jpn. J. Appl. Phys., Part 1
45
,
3766
(
2006
).
24.
T.
Nagase
,
T.
Kubota
, and
S.
Mashiko
,
Thin Solid Films
438–439
,
374
(
2003
).
25.
G. C.
Gazzadi
,
E.
Angeli
,
P.
Facci
, and
S.
Frabboni
,
Appl. Phys. Lett.
89
,
173112
(
2006
).
26.
T.
Nagase
,
K.
Gamo
,
T.
Kubota
, and
S.
Mashiko
,
Thin Solid Films
499
,
279
(
2006
).
27.
J. Y.
Zhang
,
X. F.
Wang
,
X. D.
Wang
,
Z. C.
Fan
,
Y.
Li
,
A.
Ji
, and
F. H.
Yang
,
Nanotechnology
21
,
075303
(
2010
).
You do not currently have access to this content.