Viable stuffed fullerenelike boron carbide nanoclusters, C50B34, C48B362, and their isomers based on an icosahedral B84 fragment of elemental β-rhombohedral boron have been investigated using density functional theory calculations. The structure and the stability of these clusters are rationalized using the polyhedral skeletal electron counting and ring-cap orbital overlap compatibility rules. The curvature of the fullerene was found to play a vital role in achieving the most stable isomer C50B34(3B). The large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, three dimensional aromaticity, and electron detachment energies support their high stability. Further, the IR and Raman active modes were recognized.

1.
The Borane, Carborane, Carbocation Continuum
, edited by
J.
Casanova
(
Wiley
,
New York
,
1998
).
2.
D. L. V. K.
Prasad
and
E. D.
Jemmis
,
Phys. Rev. Lett.
100
,
165504
(
2008
).
3.
N. G.
Szwacki
,
A.
Sadrzadeh
, and
B. I.
Yakobson
,
Phys. Rev. Lett.
98
,
166804
(
2007
).
4.
A.
Sadrzadeh
,
O. V.
Pupysheva
,
A. K.
Singh
, and
I. B.
Yakobson
,
J. Phys. Chem. A
112
,
13679
(
2008
).
5.
G.
Gopakumar
,
M. T.
Nguyen
, and
A.
Ceulemans
,
Chem. Phys. Lett.
450
,
175
(
2008
).
6.
Q. -B.
Yan
,
X. -L.
Sheng
,
Q. -R.
Zheng
,
L. -Z.
Zhang
, and
G.
Su
,
Phys. Rev. B
78
,
201401
(R) (
2008
).
7.
R. R.
Zope
,
T.
Baruah
,
K. C.
Lau
,
A. Y.
Liu
,
M. R.
Pederson
, and
B. I.
Dunlap
,
Phys. Rev. B
79
,
161403
(R) (
2009
).
8.
J. -T.
Wang
,
C.
Chen
,
E. G.
Wang
,
D. -S.
Wang
,
H.
Mizuseki
, and
Y.
Kawazoe
,
Appl. Phys. Lett.
94
,
133102
(
2009
).
9.
A.
Quandt
and
I.
Boustani
,
ChemPhysChem
6
,
2001
(
2005
).
10.
B.
Kiran
,
S.
Bulusu
,
H. -J.
Zhai
,
S.
Yoo
,
X. C.
Zheng
, and
L. S.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
961
(
2005
).
11.
G. A.
Slack
,
C. I.
Hejna
,
M. F.
Garbauskas
, and
J. S.
Kasper
,
J. Solid State Chem.
76
,
52
(
1988
).
12.
E. D.
Jemmis
and
M. M.
Balakrishnarajan
,
J. Am. Chem. Soc.
123
,
4324
(
2001
).
13.
E. D.
Jemmis
and
E. G.
Jayasree
,
Acc. Chem. Res.
36
,
816
(
2003
).
14.
D. L. V. K.
Prasad
,
M. M.
Balakrishnarajan
, and
E. D.
Jemmis
,
Phys. Rev. B
72
,
195102
(
2005
).
15.
D. L. V. K.
Prasad
and
E. D.
Jemmis
,
J. Mol. Struct. THEOCHEM
771
,
111
(
2006
).
16.
S.
Samson
, in
Structural Chemistry and Molecular Biology
, edited by
A.
Rich
and
N.
Davidson
(
Freeman
,
San Francisco
,
1968
), pp.
687
717
;
L.
Pauling
,
Phys. Rev. Lett.
58
,
365
(
1987
).
[PubMed]
17.
K.
Wade
,
J. Chem. Soc. D
15
,
792
(
1971
).
18.
P. v. R.
Schleyer
and
K.
Najafian
,
Inorg. Chem.
37
,
3454
(
1998
).
19.
E. D.
Jemmis
and
B.
Kiran
,
Curr. Sci.
66
,
766
(
1994
).
20.
M.
Hofmann
,
M. A.
Fox
,
R.
Greatrex
,
P. v. R.
Schleyer
, and
R. E.
Williams
,
Inorg. Chem.
40
,
1790
(
2001
).
21.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
22.
See supplementary material at http://dx.doi.org/10.1063/1.3280369 for details on the structural parameters (l,θ,d), full list of energetics, HOMO-LUMO gaps, NICS at PBE/DNP, and B3LYP/6-31G(d), infrared-, and Raman-active modes, and the Cartesian coordinates of all the optimized clusters.
23.
GAUSSIAN 03 (revision B.03): M. J. Frisch, et al, (see supplementary material Ref. 22 and for computational details see Ref. 2).
24.
E. D.
Jemmis
,
J. Am. Chem. Soc.
104
,
7017
(
1982
).
25.
E. D.
Jemmis
and
P. v. R.
Schleyer
,
J. Am. Chem. Soc.
104
,
4781
(
1982
).
26.
H. G.
von Schnering
and
R.
Nesper
,
Angew. Chem. Int. Ed. Engl.
26
,
1059
(
1987
).
As if the adaption of these structures finds a “natural solution through curvature".
27.
H.
Cundy
and
A.
Rollett
,
Mathematical Models
, 3rd ed. (
Tarquin
,
Stradbroke, England
,
1989
).
Inradius: the distance between the centre of the polyhedron and to its face.
28.
Z.
Chen
,
H.
Jiao
,
A.
Hirsch
, and
P. v. R.
Schleyer
,
Angew. Chem. Int. Ed.
41
,
4309
(
2002
).
29.
Z.
Chen
and
R. B.
King
,
Chem. Rev.
105
,
3613
(
2005
);
[PubMed]
see also,
Z.
Chen
and
R. B.
King
Chem. Rev.
105
,
3433
(
2005
), issue 10 for several fascinating reviews on aromaticity.
30.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P. C.
Eklund
,
Science of Fullerenes and Carbon Nanotubes
(
Academic
,
New York
,
1996
).
31.
Y.
Ishikawa
,
Y.
Shimizu
,
T.
Sasaki
, and
N.
Koshizaki
,
Appl. Phys. Lett.
91
,
161110
(
2007
).
32.
B.
Todorović-Marković
,
I.
Draganić
,
D.
Vasiljević-Radović
,
N.
Romčević
,
M.
Romčević
,
M.
Dramićanin
, and
Z.
Marković
,
Appl. Surf. Sci.
253
,
4029
(
2007
).
33.
S.
Chen
,
D. Z.
Wang
,
J. Y.
Huang
, and
Z. F.
Ren
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1757
(
2004
).
34.
S. L.
Shea
,
J.
Bould
,
M. G. S.
Londesborough
,
S. D.
Perera
,
A.
Franken
,
D. L.
Ormsby
,
T.
Jelínek
,
B.
Štíbr
,
J.
Holub
,
C. A.
Kilner
,
M.
Thornton-Pett
, and
J. D.
Kennedy
,
Pure Appl. Chem.
75
,
1239
(
2003
).
35.
The above results in Table I are at PBE/DNP unless they are mentioned.
36.
In Table I the NICS at GIAO-HF/6-31G(d)//B3LYP/6-31G(d). See supplementary material Ref. 22 for detailed energetics, H-L gaps, curvatures, NICS, diameters, bond distances, number of bond types, frequencies, and Cartesian coordinates calculated at PBE/DNP and B3LYP/6-31G(d) of all the clusters considered here.

Supplementary Material

You do not currently have access to this content.