We demonstrate the fabrication of graphene nanogap with crystallographically matching edges on SiO2/Si substrates by divulsion. The current-voltage measurement is then performed in a high-vacuum chamber for a graphene nanogap with few hundred nanometers separation. The parallel edges help to build uniform electrical field and allow us to perform electron emission study on individual graphene. It was found that current-voltage (I-V) characteristics are governed by the space-charge-limited flow of current at low biases while the Fowler–Nordheim model fits the I-V curves in high voltage regime. We also examined electrostatic gating effect of the vacuum electronic device. Graphene nanogap with atomically parallel edges may open up opportunities for both fundamental and applied research of vacuum nanoelectronics.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
3.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
G.
Fundenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
,
Solid State Commun.
146
,
351
(
2008
).
4.
X.
Du
,
I.
Skachko
,
A.
Barker
, and
E. Y.
Andrei
,
Nat. Nanotechnol.
3
,
491
(
2008
).
5.
F.
Miao
,
S.
Wijeratne
,
U.
Coskun
,
Y.
Zhang
,
W.
Bao
, and
C. N.
Lau
,
Science
317
,
1530
(
2007
).
6.
H.
Wang
,
C.
Choong
,
J.
Zhang
,
K. L.
Teo
, and
Y.
Wu
,
Solid State Commun.
145
,
341
(
2008
).
7.
M. Y.
Han
,
B.
Özyilmaz
,
Y.
Zhang
, and
P.
Kim
,
Phys. Rev. Lett.
98
,
206805
(
2007
).
8.
H. M.
Wang
,
Y. H.
Wu
,
Z. H.
Ni
, and
Z. X.
Shen
,
Appl. Phys. Lett.
92
,
053504
(
2008
).
9.
C. E.
Hunt
,
J. T.
Trujillo
, and
W. J.
Orvis
,
IEEE Trans. Electron Devices
38
,
2309
(
1991
).
10.
S.
Russo
,
M. F.
Craciun
,
M.
Yamamoto
,
A. F.
Morpurgo
, and
S.
Tarucha
, arXiv:0901.0485v1 (unpublished).
11.
Y.
Wu
,
B.
Yang
,
B.
Zong
,
H.
Sun
,
Z.
Shen
, and
Y.
Feng
,
J. Mater. Chem.
14
,
469
(
2004
).
12.
S.
Wang
,
J.
Wang
,
P.
Miraldo
,
M.
Zhu
,
R.
Outlaw
,
K.
Hou
,
X.
Zhao
,
B. C.
Holloway
,
D.
Manos
,
T.
Tyler
,
O.
Shenderova
,
M.
Ray
,
J.
Dalton
, and
G.
McGuire
,
Appl. Phys. Lett.
89
,
183103
(
2006
).
13.
G.
Eda
,
H. E.
Unalan
,
N.
Rupesinghe
,
G. A. J.
Amaratunga
, and
M.
Chhowalla
,
Appl. Phys. Lett.
93
,
233502
(
2008
).
14.
G.
Teo
,
H.
Wang
,
Y.
Wu
,
Z.
Guo
,
J.
Zhang
,
Z.
Ni
, and
Z.
Shen
,
J. Appl. Phys.
103
,
124302
(
2008
).
15.
Z. H.
Ni
,
H. M.
Wang
,
J.
Kasim
,
H. M.
Fan
,
T.
Yu
,
Y. H.
Wu
,
Y. P.
Feng
, and
Z. X.
Shen
,
Nano Lett.
7
,
2758
(
2007
).
16.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
683
(
1928
).
17.
C. J.
Edgcombe
and
U.
Valdrè
,
J. Microsc.
203
,
188
(
2001
).
18.
Y. -J.
Yu
,
Y.
Zhao
,
S.
Ryu
,
L. E.
Brus
,
K. S.
Kim
, and
P.
Kim
,
Nano Lett.
9
,
3430
(
2009
).
19.
A. W.
Chao
and
M.
Tigner
,
Handbook of Accelerator Physics and Engineering
(
World Scientific
,
Singapore
,
1999
), p.
100
.
20.
L. K.
Ang
,
T. J. T.
Kwan
, and
Y. Y.
Lau
,
Phys. Rev. Lett.
91
,
208303
(
2003
).
21.
S. S.
Bhattacharjee
,
A.
Vartak
, and
V.
Mukherjee
,
Appl. Phys. Lett.
92
,
191503
(
2008
).
22.
See supplementary material at http://dx.doi.org/10.1063/1.3291110 for an electrical potential contour plot in a monolayer graphene nanogap with gap spacing of 100 nm and electrode width of 100 nm from both top view and side view.
23.
R.
Dombrowski
,
C.
Steinebach
,
C.
Wittneven
,
M.
Morgenstern
, and
R.
Wiesendanger
,
Phys. Rev. B
59
,
8043
(
1999
).

Supplementary Material

You do not currently have access to this content.