We analyze the influence of the magnetic field generated by the supercurrents (self-field) on the current density distribution by numerical simulations. The thickness of the superconducting film determines the self-field and consequently the critical current density at zero applied field. We find an equation, which derives the thickness dependence of the critical current density from its dependence on the magnetic induction. Solutions of the equation reproduce numerical simulations to great accuracy, thus enabling a quantification of the dependence of the self-field critical current density with increasing film thickness. This result is technologically relevant for the development of coated conductors with thicker superconducting layers.

1.
A.
Mogro-Campero
,
L. G.
Turner
,
E. L.
Hall
,
N.
Lewis
,
L. A.
Peluso
, and
W. E.
Balz
,
Supercond. Sci. Technol.
3
,
62
(
1990
).
2.
S. R.
Foltyn
,
P.
Tiwari
,
R. C.
Dye
,
M. Q.
Le
, and
X. D.
Wu
,
Appl. Phys. Lett.
63
,
1848
(
1993
).
3.
S. R.
Foltyn
,
Q. X.
Jia
,
P. N.
Arendt
,
L.
Kinder
,
Y.
Fan
, and
J. F.
Smith
,
Appl. Phys. Lett.
75
,
3692
(
1999
).
4.
S. R.
Foltyn
,
P. N.
Arendt
,
Q. X.
Jia
,
H.
Wang
,
J. L.
MacManus-Driscoll
,
S.
Kreiskott
,
R. F.
DePaula
,
L.
Stan
,
J. R.
Groves
, and
P. C.
Dowden
,
Appl. Phys. Lett.
82
,
4519
(
2003
).
5.
A. O.
Ijaduola
,
J. R.
Thompson
,
R.
Feenstra
,
D. K.
Christen
,
A. A.
Gapud
, and
X.
Song
,
Phys. Rev. B
73
,
134502
(
2006
).
6.
L.
Rostila
,
J.
Lehtonen
, and
R.
Mikkonen
,
Physica C
451
,
66
(
2007
).
7.
F.
Hengstberger
,
M.
Eisterer
, and
H. W.
Weber
, arXiv:0912.1979v1 (unpublished).
8.
E. H.
Brandt
and
M.
Indenbom
,
Phys. Rev. B
48
,
12893
(
1993
).
You do not currently have access to this content.