Based on first-principles calculations, we present a study for p-type ZnO doping. We find that by doping Fe into the p-type ZnO, the resulting FeZn2NO complex is a stable acceptor that has shallower ε(0/) transition level and lower formation energy in comparison with the isolated NO. Moreover, the FeZnVZn pair is another resulting defect that is a shallow acceptor, for which the minimum formation energy occurs at the O-rich limit. As parent defects, FeZn behave as deep donor that do not lead to overcompensation. Therefore, Fe-related acceptor complexes may be promising candidates for p-type ZnO doping.

1.
S. -H.
Wei
and
S. B.
Zhang
,
Phys. Rev. B
66
,
155211
(
2002
).
2.
S. B.
Zhang
,
S. -H.
Wei
, and
A.
Zunger
,
Phys. Rev. B
63
,
075205
(
2001
).
3.
A.
Zunger
,
Appl. Phys. Lett.
83
,
57
(
2003
).
4.
C. H.
Park
,
S. B.
Zhang
, and
S. -H.
Wei
,
Phys. Rev. B
66
,
073202
(
2002
).
5.
J.
Li
,
S. -H.
Wei
,
S. -S.
Li
and
J. -B.
Xia
,
Phys. Rev. B
74
,
081201
(R) (
2006
).
6.
T.
Yamamoto
and
H.
Katayama-Yoshida
,
Jpn. J. Appl. Phys., Part 2
38
,
L166
(
1999
).
7.
Y.
Jiang
,
N. C.
Giles
, and
L. E.
Halliburton
,
J. Appl. Phys.
101
,
093706
(
2007
).
8.
T.
Dietl
,
H.
Ohno
,
F.
Matsukura
,
J.
Cibert
, and
D.
Ferrand
,
Science
287
,
1019
(
2000
).
9.
M. G.
Wardle
,
J. P.
Goss
, and
P. R.
Briddon
,
Phys. Rev. B
72
,
155108
(
2005
).
10.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allen
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
11.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
12.
S. -H.
Wei
,
Comput. Mater. Sci.
30
,
337
(
2004
).
13.
S.
Singh
and
M. S.
Ramachandra Rao
,
Phys. Rev. B
80
,
045210
(
2009
).
14.
Y.
Yan
,
S. B.
Zhang
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
86
,
5723
(
2001
).
15.
S.
Limpijumnong
,
S. B.
Zhang
,
S. -H.
Wei
, and
C. H.
Park
,
Phys. Rev. Lett.
92
,
155504
(
2004
).
You do not currently have access to this content.