We describe an inertial measurement device based on an electrodynamically trapped proof mass. Mechanical constraints are replaced by guiding fields, permitting the trap stiffness to be tuned dynamically. Optical readout of the proof mass motion provides a measurement of acceleration and rotation, resulting in an integrated six degree of freedom inertial measurement device. We demonstrate such a device—constructed without microfabrication—with sensitivity comparable to that of commercial microelectromechanical systems technology and show how trapping parameters may be adjusted to increase dynamic range.

1.
E. B.
Cooper
,
E. R.
Post
,
S.
Griffith
,
J.
Levitan
,
S. R.
Manalis
,
M. A.
Schmidt
, and
C. F.
Quate
,
Appl. Phys. Lett.
76
,
3316
(
2000
).
2.
T. B.
Gabrielson
,
IEEE Trans. Electron Devices
40
,
903
(
1993
).
3.
W.
Paul
,
Rev. Mod. Phys.
62
,
531
(
1990
).
4.
H. G.
Dehmelt
,
Advances in Atomic and Molecular Physics
, edited by
Bates
and
Estermann
(
Academic
,
New York
,
1967
), Vol.
3
, pp.
53
72
.
5.
R. G.
Brewer
,
R. G.
DeVoe
, and
R.
Kallenbach
,
Phys. Rev. A
46
,
R6781
(
1992
).
6.
V. I.
Arnol’d
,
V. V.
Kozlov
, and
A. I.
Neishtadt
,
Mathematical Aspects of Classical and Celestial Mechanics
, 2nd ed. (
Springer
,
Berlin
,
1997
).
7.
S.
Arnold
,
J. H.
Li
,
S.
Holler
,
A.
Korn
, and
A. F.
Izmailov
,
J. Appl. Phys.
78
,
3566
(
1995
).
8.
D. T.
Gillespie
,
Am. J. Phys.
64
,
225
(
1996
).
9.
The data sheet for the Analog Devices ADXL103 ±1.7 g single-axis MEMS accelerometer specifies an acceleration noise density of an=110μg/Hz and a typical rms noise level of an1.6×Δf=1846μg for the bandwidth (Δf=110Hz) over which our device was characterized.
You do not currently have access to this content.