We obtained evidence for the partial chemical segregation of as-deposited and hydrogenated Mg1yTiy films (0y0.30) into nanoscale Ti and Mg domains using positron Doppler-broadening. We exclusively monitor the hydrogenation of Mg domains, owing to the large difference in positron affinity for Mg and Ti. The electron momentum distribution broadens significantly upon transformation to the MgH2 phase over the whole compositional range. This reveals the similarity of the metal-insulator transition for rutile and fluorite MgH2. Positron lifetime studies show the presence of divacancies in the as-deposited and hydrogenated Mg-Ti metal films. In conjunction with the relatively large local lattice relaxations we deduce to be present in fluorite MgH2, these may be responsible for the fast hydrogen sorption kinetics in this MgH2 phase.

You do not currently have access to this content.