Effective work function (EWF) changes of TiN/HfO2 annealed at low temperatures in different ambient environments are correlated with the atomic concentration of oxygen in the TiN near the metal/dielectric interface. EWF increases of 550 meV are achieved with anneals that incorporate oxygen throughout the TiN with [O]=2.8×1021cm3 near the TiN/HfO2 interface. However, further increasing the oxygen concentration via more aggressive anneals results in a relative decrease of the EWF and increase in electrical thickness. First-principles calculations indicate the exchange of O and N atoms near the TiN/HfO2 interface cause the formation of dipoles that increase the EWF.

1.
B. H.
Lee
,
J.
Oh
,
H. H.
Tseng
,
R.
Jammy
, and
H.
Huff
,
Mater. Today
9
,
32
(
2006
).
2.
E. P.
Gusev
,
V.
Narayanan
, and
M. M.
Frank
,
IBM J. Res. Dev.
50
,
387
(
2006
).
3.
L.
Lin
and
J.
Robertson
,
Microelectron. Eng.
86
,
1743
(
2009
).
4.
H. J.
Li
and
M. I.
Gardner
,
IEEE Electron Device Lett.
26
,
441
(
2005
).
5.
J. K.
Schaeffer
,
L. R. C.
Fonseca
,
S. B.
Samavedam
,
Y.
Liang
,
P. J.
Tobin
, and
B. E.
White
,
Appl. Phys. Lett.
85
,
1826
(
2004
).
6.
E.
Cartier
,
F. R.
McFeely
,
V.
Narayanan
,
P.
Jamison
,
B. P.
Linder
,
M.
Copel
,
V. K.
Paruchuri
,
V. S.
Basker
,
R.
Haight
,
D.
Lim
,
R.
Carruthers
,
T.
Shaw
,
M.
Steen
,
J.
Sleight
,
J.
Rubino
,
H.
Deligianni
,
S.
Guha
,
R.
Jammy
, and
G.
Shahidi
,
2005 Symposium on VLSI Technology, Digest of Technical Papers
,
2005
(unpublished), p.
230
.
7.
B.
Chen
,
R.
Jha
,
H.
Lazar
,
N.
Biswas
,
J.
Lee
,
B.
Lee
,
L.
Wielunski
,
E.
Garfunkel
, and
V.
Misra
,
IEEE Electron Device Lett.
27
,
228
(
2006
).
8.
J.
Lee
,
H.
Park
,
H.
Choi
,
M.
Hasan
,
M.
Jo
,
M.
Chang
,
B. H.
Lee
,
C. S.
Park
,
C. Y.
Kang
, and
H.
Hwang
,
Appl. Phys. Lett.
92
,
263505
(
2008
).
9.
E.
Cartier
,
M.
Steen
,
B. P.
Linder
,
T.
Ando
,
R.
Iijima
,
M.
Frank
,
J. S.
Newbury
,
Y. H.
Kim
,
F. R.
McFeely
,
M.
Copel
,
R.
Haight
,
C.
Choi
,
A.
Callegari
,
V. K.
Paruchuri
, and
V.
Narayanan
,
2009 Symposium on VLSI Technology, Digest of Technical Papers
,
2009
(unpublished), p.
42
.
10.
W.
Mizubayashi
,
K.
Akiyama
,
W.
Wang
,
M.
Ikeda
,
K.
Iwamoto
,
Y.
Kamimuta
,
A.
Hirano
,
H.
Ota
,
T.
Nabatame
, and
A.
Toriumi
,
2008 Symposium on VLSI Technology, Digest of Technical Papers
,
2008
, Vol.
42
, p.
61
.
11.
E.
Cartier
,
M.
Hopstaken
, and
M.
Copel
,
Appl. Phys. Lett.
95
,
042901
(
2009
).
12.
T. S.
Kim
,
S. S.
Park
, and
B. T.
Lee
,
Mater. Lett.
59
,
3929
(
2005
).
13.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 2nd ed. (
Wiley
,
New York
,
1998
), pp.
356
362
.
14.
MedeA 2.3, Materials Design, Inc., Angel Fire, NM (
2008
).
15.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
16.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
17.
M.
Peressi
,
S.
Baroni
,
A.
Baldereschi
, and
R.
Resta
,
Phys. Rev. B
41
,
12106
(
1990
).
You do not currently have access to this content.