We report on photocurrent and photoconductance processes in a freely suspended p-doped single GaAs nanowire. The nanowires are grown by molecular beam epitaxy, and they are electrically contacted by a focused ion beam deposition technique. The observed photocurrent is generated at the Schottky contacts between the nanowire and metal source-drain electrodes, while the observed photoconductance signal can be explained by a photogating effect induced by optically generated charge carriers located at the surface of the nanowire. Both optoelectronic effects are sensitive to the polarization of the exciting laser field, enabling polarization dependent photodetectors.

1.
Y.
Cui
and
C. M.
Lieber
,
Science
291
,
851
(
2001
).
2.
J.
Wang
,
M. S.
Gudiksen
,
X.
Duan
,
Y.
Cui
, and
C. M.
Lieber
,
Science
293
,
1455
(
2001
).
3.
M. T.
Bjork
,
B. J.
Ohlsson
,
T.
Sass
,
A. I.
Persson
,
C.
Thelander
,
M. H.
Magnusson
,
K.
Deppert
,
L. R.
Wallenberg
, and
L.
Samuelson
,
Appl. Phys. Lett.
80
,
1058
(
2002
).
4.
S.
De Franceschi
,
J. A.
van Dam
,
E. P. A. M.
Bakkers
,
L. F.
Feiner
,
L.
Gurevich
, and
L. P.
Kouwenhoven
,
Appl. Phys. Lett.
83
,
344
(
2003
).
5.
L.
Samuelson
,
C.
Thelander
,
M. T.
Björk
,
M.
Borgström
,
K.
Deppert
,
K. A.
Dick
,
A. E.
Hansen
,
T.
Mårtensson
,
N.
Panev
,
A. I.
Persson
,
W.
Seifert
,
N.
Sköld
,
M. W.
Larsson
, and
L. R.
Wallenberg
,
Physica E
25
,
313
(
2004
).
6.
O.
Hayden
,
R.
Agarwal
, and
C. M.
Lieber
,
Nature Mater.
5
,
352
(
2006
).
7.
E. D.
Minot
,
F.
Kelkensberg
,
M.
van Kouwen
,
J. A.
van Dam
,
L. P.
Kouwenhoven
,
V.
Zwiller
,
M. T.
Borgström
,
O.
Wunnicke
,
M. A.
Verheijen
, and
E. P. A. M.
Bakkers
,
Nano Lett.
7
,
367
(
2007
).
8.
Y.
Gu
,
E. -S.
Kwak
,
J. L.
Lensch
,
J. E.
Allen
,
T. W.
Odom
, and
L. J.
Lauhon
,
Appl. Phys. Lett.
87
,
043111
(
2005
).
9.
H.
Kind
,
H.
Yan
,
B.
Messer
,
M.
Law
, and
P.
Yang
,
Adv. Mater. (Weinheim, Ger.)
14
,
158
(
2002
).
10.
H.
Pettersson
,
J.
Tragardh
,
A. I.
Persson
,
L.
Landin
,
D.
Hessman
, and
L.
Samuelson
,
Nano Lett.
6
,
229
(
2006
).
11.
T.
Bryllert
,
L. -E.
Wernersson
,
T.
Löwgren
, and
L.
Samuelson
,
Nanotechnology
17
,
S227
(
2006
).
12.
L. J.
Lauhon
,
M. S.
Gudiksen
,
C. L.
Wang
, and
C. M.
Lieber
,
Nature (London)
420
,
57
(
2002
).
13.
K. A.
Dick
,
K.
Deppert
,
M. W.
Larsson
,
T.
Martensson
,
W.
Seifert
,
L. R.
Wallenberg
, and
L.
Samuelson
,
Nature Mater.
3
,
380
(
2004
).
14.
E. P. A. M.
Bakkers
,
J. A.
van Dam
,
S.
de Franceschi
,
L. P.
Kouwenhoven
,
M.
Kaiser
,
M.
Verheijen
,
H.
Wondergem
, and
P.
van der Sluis
,
Nature Mater.
3
,
769
(
2004
).
15.
C.
Colombo
,
D.
Spirkoska
,
M.
Frimmer
,
G.
Abstreiter
, and
A.
Fontcuberta i Morral
,
Phys. Rev. B
77
,
155326
(
2008
).
16.
A.
Fontcuberta i Morral
,
C.
Colombo
,
J.
Arbiol
,
J. R.
Morante
, and
G.
Abstreiter
,
Appl. Phys. Lett.
92
,
063112
(
2008
).
17.
C.
Colombo
,
M.
Heiss
,
M.
Grätzel
, and
A.
Fontcuberta i Morral
,
Appl. Phys. Lett.
94
,
173108
(
2009
).
18.
We utilize a FIB machine NVISION40 of ZEISS in combination with Kleindieck manipulators.
19.
Y.
Peng
,
I.
Luxmoore
,
M. D.
Forster
,
A. G.
Cullis
, and
B. J.
Inkson
,
J. Phys.: Conf. Ser.
126
,
012031
(
2008
).
20.
C.
Rossler
,
K. -D.
Hof
,
S.
Manus
,
S.
Ludwig
,
J. P.
Kotthaus
,
J.
Simon
,
A. W.
Holleitner
,
D.
Schuh
, and
W.
Wegscheider
,
Appl. Phys. Lett.
93
,
071107
(
2008
).
21.
K. -D.
Hof
,
C.
Rossler
,
S.
Manus
,
J. P.
Kotthaus
,
A. W.
Holleitner
,
D.
Schuh
, and
W.
Wegscheider
,
Phys. Rev. B
78
,
115325
(
2008
).
22.
Z. Y.
Zhang
,
C. H.
Jin
,
X. L.
Liang
,
Q.
Chen
, and
L. -M.
Peng
,
Appl. Phys. Lett.
88
,
073102
(
2006
).
23.
E.
Beham
,
A.
Zrenner
,
F.
Findeis
,
M.
Bichler
, and
G.
Abstreiter
,
Appl. Phys. Lett.
79
,
2808
(
2001
).
24.
We performed photoluminescence measurements on an ensemble of the p-doped nanowires located on top of a SiO2-chip at room temperature. The maximum of the photoluminescence at EPL1.43eV agrees reasonably well with the band gap energy EGaAs at room temperature.
25.
A.
Schmeller
,
W.
Hansen
,
J. P.
Kotthaus
,
G.
Trinkle
, and
G.
Weimann
,
Appl. Phys. Lett.
64
,
330
(
1994
).
26.
P.
Baumgartner
,
C.
Engel
,
G.
Böhm
, and
G.
Abstreiter
,
Appl. Phys. Lett.
70
,
2876
(
1997
).
27.
A.
Cavallini
,
L.
Polenta
,
M.
Rossi
,
T.
Stoica
,
R.
Calarco
,
R. J.
Meijers
,
T.
Richter
, and
H.
Lüth
,
Nano Lett.
7
,
2166
(
2007
).
28.
W. E.
Spicer
,
P. W.
Chye
,
C. M.
Garner
,
I.
Lindau
, and
P.
Pianetta
,
Surf. Sci.
86
,
763
(
1979
).
29.
S. P.
Riege
,
T.
Kurth
,
F.
Runkel
,
D.
Heitmann
, and
K.
Eberl
,
Appl. Phys. Lett.
70
,
111
(
1997
).
30.
A.
Gärtner
,
L.
Prechtel
,
D.
Schuh
,
A. W.
Holleitner
, and
J. P.
Kotthaus
,
Phys. Rev. B
76
,
085304
(
2007
).
31.
The magnitude of |Iphoton|20pA [Fig. 1(d)] suggests a relative change in the number of holes per laser chopping cycle ΔNh/NhΔEF/EF|Iphoton|/|ISD|103, with EF the Fermi energy. The total number of holes in the active layer can be estimated to be Nh=Vactivens105, with ns the hole density and Vactive the active volume of the nanowire. The corresponding number of excess holes ΔNh=102 is smaller than the number Nphoton of absorbed photons per cycle, which can be estimated as Nphoton=IlaserAαd/(Ephotonfchop)=30μW/cm2×(2.8×109cm2)×0.014/(1.7eV×930Hz)105, with A the illuminated area of the wire, d its thickness, and α the absorption coefficient of GaAs, thus enabling the discussed photodoping effect.
You do not currently have access to this content.