We report on photocurrent and photoconductance processes in a freely suspended -doped single GaAs nanowire. The nanowires are grown by molecular beam epitaxy, and they are electrically contacted by a focused ion beam deposition technique. The observed photocurrent is generated at the Schottky contacts between the nanowire and metal source-drain electrodes, while the observed photoconductance signal can be explained by a photogating effect induced by optically generated charge carriers located at the surface of the nanowire. Both optoelectronic effects are sensitive to the polarization of the exciting laser field, enabling polarization dependent photodetectors.
REFERENCES
1.
Y.
Cui
and C. M.
Lieber
, Science
291
, 851
(2001
).2.
J.
Wang
, M. S.
Gudiksen
, X.
Duan
, Y.
Cui
, and C. M.
Lieber
, Science
293
, 1455
(2001
).3.
M. T.
Bjork
, B. J.
Ohlsson
, T.
Sass
, A. I.
Persson
, C.
Thelander
, M. H.
Magnusson
, K.
Deppert
, L. R.
Wallenberg
, and L.
Samuelson
, Appl. Phys. Lett.
80
, 1058
(2002
).4.
S.
De Franceschi
, J. A.
van Dam
, E. P. A. M.
Bakkers
, L. F.
Feiner
, L.
Gurevich
, and L. P.
Kouwenhoven
, Appl. Phys. Lett.
83
, 344
(2003
).5.
L.
Samuelson
, C.
Thelander
, M. T.
Björk
, M.
Borgström
, K.
Deppert
, K. A.
Dick
, A. E.
Hansen
, T.
Mårtensson
, N.
Panev
, A. I.
Persson
, W.
Seifert
, N.
Sköld
, M. W.
Larsson
, and L. R.
Wallenberg
, Physica E
25
, 313
(2004
).6.
O.
Hayden
, R.
Agarwal
, and C. M.
Lieber
, Nature Mater.
5
, 352
(2006
).7.
E. D.
Minot
, F.
Kelkensberg
, M.
van Kouwen
, J. A.
van Dam
, L. P.
Kouwenhoven
, V.
Zwiller
, M. T.
Borgström
, O.
Wunnicke
, M. A.
Verheijen
, and E. P. A. M.
Bakkers
, Nano Lett.
7
, 367
(2007
).8.
Y.
Gu
, E. -S.
Kwak
, J. L.
Lensch
, J. E.
Allen
, T. W.
Odom
, and L. J.
Lauhon
, Appl. Phys. Lett.
87
, 043111
(2005
).9.
H.
Kind
, H.
Yan
, B.
Messer
, M.
Law
, and P.
Yang
, Adv. Mater. (Weinheim, Ger.)
14
, 158
(2002
).10.
H.
Pettersson
, J.
Tragardh
, A. I.
Persson
, L.
Landin
, D.
Hessman
, and L.
Samuelson
, Nano Lett.
6
, 229
(2006
).11.
T.
Bryllert
, L. -E.
Wernersson
, T.
Löwgren
, and L.
Samuelson
, Nanotechnology
17
, S227
(2006
).12.
L. J.
Lauhon
, M. S.
Gudiksen
, C. L.
Wang
, and C. M.
Lieber
, Nature (London)
420
, 57
(2002
).13.
K. A.
Dick
, K.
Deppert
, M. W.
Larsson
, T.
Martensson
, W.
Seifert
, L. R.
Wallenberg
, and L.
Samuelson
, Nature Mater.
3
, 380
(2004
).14.
E. P. A. M.
Bakkers
, J. A.
van Dam
, S.
de Franceschi
, L. P.
Kouwenhoven
, M.
Kaiser
, M.
Verheijen
, H.
Wondergem
, and P.
van der Sluis
, Nature Mater.
3
, 769
(2004
).15.
C.
Colombo
, D.
Spirkoska
, M.
Frimmer
, G.
Abstreiter
, and A.
Fontcuberta i Morral
, Phys. Rev. B
77
, 155326
(2008
).16.
A.
Fontcuberta i Morral
, C.
Colombo
, J.
Arbiol
, J. R.
Morante
, and G.
Abstreiter
, Appl. Phys. Lett.
92
, 063112
(2008
).17.
C.
Colombo
, M.
Heiss
, M.
Grätzel
, and A.
Fontcuberta i Morral
, Appl. Phys. Lett.
94
, 173108
(2009
).18.
We utilize a FIB machine NVISION40 of ZEISS in combination with Kleindieck manipulators.
19.
Y.
Peng
, I.
Luxmoore
, M. D.
Forster
, A. G.
Cullis
, and B. J.
Inkson
, J. Phys.: Conf. Ser.
126
, 012031
(2008
).20.
C.
Rossler
, K. -D.
Hof
, S.
Manus
, S.
Ludwig
, J. P.
Kotthaus
, J.
Simon
, A. W.
Holleitner
, D.
Schuh
, and W.
Wegscheider
, Appl. Phys. Lett.
93
, 071107
(2008
).21.
K. -D.
Hof
, C.
Rossler
, S.
Manus
, J. P.
Kotthaus
, A. W.
Holleitner
, D.
Schuh
, and W.
Wegscheider
, Phys. Rev. B
78
, 115325
(2008
).22.
Z. Y.
Zhang
, C. H.
Jin
, X. L.
Liang
, Q.
Chen
, and L. -M.
Peng
, Appl. Phys. Lett.
88
, 073102
(2006
).23.
E.
Beham
, A.
Zrenner
, F.
Findeis
, M.
Bichler
, and G.
Abstreiter
, Appl. Phys. Lett.
79
, 2808
(2001
).24.
We performed photoluminescence measurements on an ensemble of the -doped nanowires located on top of a -chip at room temperature. The maximum of the photoluminescence at agrees reasonably well with the band gap energy at room temperature.
25.
A.
Schmeller
, W.
Hansen
, J. P.
Kotthaus
, G.
Trinkle
, and G.
Weimann
, Appl. Phys. Lett.
64
, 330
(1994
).26.
P.
Baumgartner
, C.
Engel
, G.
Böhm
, and G.
Abstreiter
, Appl. Phys. Lett.
70
, 2876
(1997
).27.
A.
Cavallini
, L.
Polenta
, M.
Rossi
, T.
Stoica
, R.
Calarco
, R. J.
Meijers
, T.
Richter
, and H.
Lüth
, Nano Lett.
7
, 2166
(2007
).28.
W. E.
Spicer
, P. W.
Chye
, C. M.
Garner
, I.
Lindau
, and P.
Pianetta
, Surf. Sci.
86
, 763
(1979
).29.
S. P.
Riege
, T.
Kurth
, F.
Runkel
, D.
Heitmann
, and K.
Eberl
, Appl. Phys. Lett.
70
, 111
(1997
).30.
A.
Gärtner
, L.
Prechtel
, D.
Schuh
, A. W.
Holleitner
, and J. P.
Kotthaus
, Phys. Rev. B
76
, 085304
(2007
).31.
The magnitude of [Fig. 1(d)] suggests a relative change in the number of holes per laser chopping cycle , with the Fermi energy. The total number of holes in the active layer can be estimated to be , with the hole density and the active volume of the nanowire. The corresponding number of excess holes is smaller than the number of absorbed photons per cycle, which can be estimated as , with the illuminated area of the wire, its thickness, and the absorption coefficient of GaAs, thus enabling the discussed photodoping effect.
© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.