Tunneling electroresistance (TER) effect is the change in the electrical resistance of a ferroelectric tunnel junction (FTJ) associated with polarization reversal in the ferroelectric barrier layer. Here we predict that a FTJ with a composite barrier that combines a functional ferroelectric film and a thin layer of a nonpolar dielectric can exhibit a significantly enhanced TER. Due to the change in the electrostatic potential with polarization reversal, the nonpolar dielectric barrier acts as a switch that changes its barrier height from a low to high value. The predicted values of TER are giant and indicate that the resistance of the FTJ can be changed by several orders in magnitude at the coercive electric field of ferroelectric.

1.
M.
Dawber
,
K. M.
Rabe
, and
J. F.
Scott
,
Rev. Mod. Phys.
77
,
1083
(
2005
).
2.
J. F.
Scott
,
J. Phys.: Condens. Matter
18
,
R361
(
2006
).
3.
G. W.
Dietz
,
M.
Schumacher
,
R.
Waser
,
S. K.
Streiffer
,
C.
Basceri
, and
A. I.
Kingon
,
J. Appl. Phys.
82
,
2359
(
1997
);
S.
Zafar
,
R. E.
Jones
,
B.
Jiang
,
B.
White
,
V.
Kaushik
, and
S.
Gillespie
,
Appl. Phys. Lett.
73
,
3533
(
1998
);
B.
Zhang
,
H. -S.
Kwok
, and
H.. -C.
Huang
,
J. Appl. Phys.
98
,
123103
(
2005
).
4.
H. M.
Chen
,
S. W.
Tsaur
, and
J. Y. M.
Lee
,
Jpn. J. Appl. Phys., Part 1
37
,
4056
(
1998
);
P.
Zubko
,
D. J.
Jung
, and
J. F.
Scott
,
J. Appl. Phys.
100
,
114113
(
2006
).
5.
I.
Stolichnov
,
A. K.
Tagantsev
,
E. L.
Colla
, and
N.
Setter
,
Appl. Phys. Lett.
73
,
1361
(
1998
).
6.
J.
Rodríguez Contreras
,
H.
Kohlstedt
,
U.
Poppe
,
R.
Waser
,
C.
Buchal
, and
N. A.
Pertsev
,
Appl. Phys. Lett.
83
,
4595
(
2003
).
7.
E. Y.
Tsymbal
and
H.
Kohlstedt
,
Science
313
,
181
(
2006
).
8.
D. D.
Fong
G. B.
Stephenson
,
S. K.
Streiffer
,
J. A.
Eastman
,
O.
Auciello
,
P. H.
Fuoss
, and
C.
Thompson
,
Science
304
,
1650
(
2004
);
[PubMed]
C.
Lichtensteiger
,
J. M.
Triscone
,
J.
Junquera
, and
Ph.
Ghosez
,
Phys. Rev. Lett.
94
,
047603
(
2005
);
[PubMed]
D. A.
Tenne
,
A.
Bruchhausen
,
N. D.
Lanzillotti-Kimura
,
A.
Fainstein
,
R. S.
Katiyar
,
A.
Cantarero
,
A.
Soukiassian
,
V.
Vaithyanathan
,
J. H.
Haeni
,
W.
Tian
,
D. G.
Schlom
,
K. J.
Choi
,
D. M.
Kim
,
C. B.
Eom
,
H. P.
Sun
,
X. Q.
Pan
,
Y. L.
Li
,
L. Q.
Chen
,
Q. X.
Jia
,
S. M.
Nakhmanson
,
K. M.
Rabe
, and
X. X.
Xi
,
Science
313
,
1614
(
2006
).
[PubMed]
9.
J.
Junquera
and
Ph.
Ghosez
,
Nature (London)
422
,
506
(
2003
);
N.
Sai
,
A. M.
Kolpak
, and
A. M.
Rappe
,
Phys. Rev. B
72
,
020101
(
2005
);
C. -G.
Duan
,
R. F.
Sabirianov
,
W. -N.
Mei
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Nano Lett.
6
,
483
(
2006
);
[PubMed]
G.
Gerra
,
A. K.
Tagantsev
,
N.
Setter
, and
K.
Parlinski
,
Phys. Rev. Lett.
96
,
107603
(
2006
).
[PubMed]
10.
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
94
,
246802
(
2005
);
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
102
,
169901
(
2009
);
M. Y.
Zhuravlev
,
R. F.
Sabirianov
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Appl. Phys. Lett.
87
,
222114
(
2005
).
11.
H.
Kohlstedt
,
N. A.
Pertsev
,
J.
Rodríguez Contreras
, and
R.
Waser
,
Phys. Rev. B
72
,
125341
(
2005
).
12.
J. P.
Velev
,
C. -G.
Duan
,
K. D.
Belashchenko
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
98
,
137201
(
2007
).
13.
J. P.
Velev
,
C. -G.
Duan
,
J. D.
Burton
,
A.
Smogunov
,
M. K.
Niranjan
,
E.
Tosatti
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Nano Lett.
9
,
427
(
2009
).
14.
M.
Gajek
,
M.
Bibes
,
S.
Fusil
,
K.
Bouzehouane
,
J.
Fontcuberta
,
A.
Barthélémy
, and
A.
Fert
,
Nature Mater.
6
,
296
(
2007
).
15.
V.
Garcia
,
S.
Fusil
,
K.
Bouzehouane
,
S.
Enouz-Vedrenne
,
N. D.
Mathur
,
A.
Barthélémy
, and
M.
Bibes
,
Nature (London)
460
,
81
(
2009
).
16.
A.
Gruverman
,
D.
Wu
,
H.
Lu
,
Y.
Wang
,
H. W.
Jang
,
C. M.
Folkman
,
M. Ye.
Zhuravlev
,
D.
Felker
,
M.
Rzchowski
,
C. -B.
Eom
, and
E. Y.
Tsymbal
(unpublished).
17.
P.
Maksymovych
,
S.
Jesse
,
P.
Yu
,
R.
Ramesh
,
A. P.
Baddorf
, and
S. V.
Kalinin
,
Science
324
,
1421
(
2009
).
18.
In Ref. 10, we assumed that εf=2000, which relates to a nonsaturated ferroelectric state. As follows from our analysis based on the Landau–Ginzburg parameterization of BaTiO3, in the saturated state the dielectric constant is εf90. This value is consistent with experiment (
M.
Rzchowski
, personal communication).
19.
This value is consistent with results of first-principles calculations of Refs. 12 and 13.
You do not currently have access to this content.