Recombination in oxide-passivated boron-diffused silicon is found to increase severely at room temperature. The degradation reaction leads to a 45 fold increase in emitter recombination that saturates in 120days, irrespective of whether the samples received a forming-gas anneal. The degradation was also examined for diffusions stored at 50, 75, and 100°C. The results indicate that the degradation follows a second-order reaction where the time constant of one component of the reaction is 10–40 times shorter than the other, and where the activation energy of the fast reaction is 0.19±0.05eV. Subsequent to degradation, annealing in air reduces the recombination with increasing anneal temperature saturating at 300°C to a value that is about four times higher than the predegradation value. A likely cause of this degradation is a reaction of atomic hydrogen at the silicon-oxide-silicon interface.

1.
A. G.
Aberle
,
P. P.
Altermatt
,
G.
Heiser
,
S. J.
Robinson
,
A.
Wang
,
J.
Zhao
,
U.
Krumbein
, and
M. A.
Green
,
J. Appl. Phys.
77
,
3491
(
1995
).
2.
D. E.
Kane
and
R. M.
Swanson
,
Proceedings of the 18th IEEE Photovoltaic Specialists Conference
, Las Vegas, NV,
1985
(unpublished).
3.
R. R.
King
,
R. A.
Sinton
, and
R. M.
Swanson
,
IEEE Trans. Electron Devices
37
,
365
(
1990
).
4.
P. P.
Altermatt
,
H.
Plagwitz
,
R.
Bock
,
J.
Schmidt
,
R.
Brendel
,
M. J.
Kerr
, and
A.
Cuevas
,
Proceedings of the 21st European Photovoltaic Solar Energy Conference
, Dresden, Germany, 4–8 September
2006
(unpublished).
5.
R. R.
King
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
38
,
1399
(
1991
).
6.
J.
Zhao
,
A.
Wang
,
P.
Altermatt
, and
M. A.
Green
,
Appl. Phys. Lett.
66
,
3636
(
1995
).
7.
J.
Zhao
,
A.
Wang
,
P. P.
Altermatt
,
M. A.
Green
,
J. P.
Rakotoniaina
, and
O.
Breitenstein
,
Proceedings of the IEEE, Photovoltaic Specialists Conference
, Piscataway, NJ,
2002
(unpublished), pp.
218
221
.
8.
J.
Schmidt
,
M.
Kerr
, and
A.
Cuevas
,
Semicond. Sci. Technol.
16
,
164
(
2001
).
9.
J.
Zhao
,
J.
Schmidt
,
A.
Wang
,
G.
Zhang
,
B.
Richards
, and
M.
Green
,
Proceedings of the Third World Conference on Photovoltaic Energy Conversion
, Osaka, Japan,
2003
(unpublished).
10.
W.
Kern
and
D. A.
Puotinen
,
RCA Rev.
31
,
187
(
1970
).
11.
R. A.
Sinton
and
R. M.
Swanson
,
IEEE Trans. Electron Devices
34
,
1380
(
1987
).
12.
A. B.
Sproul
and
M. A.
Green
,
J. Appl. Phys.
70
,
846
(
1991
).
13.
P. P.
Altermatt
,
J.
Schmidt
,
M.
Kerr
,
G.
Heiser
, and
A. G.
Aberle
,
Proceedings of the 16th European Photovoltaic Solar Energy Conference
, Glasgow, Scotland,
2000
(unpublished).
14.
H.
Nagel
,
C.
Berge
, and
A. G.
Aberle
,
J. Appl. Phys.
86
,
6218
(
1999
).
15.
L. J.
Geerligs
and
D. H.
Macdonald
,
Prog. Photovoltaics
12
,
309
(
2004
).
16.
J. G.
Fossum
,
IEEE Trans. Electron Devices
24
,
322
(
1977
).
17.
B. B.
Paudyal
,
K. R.
McIntosh
,
D. H.
Macdonald
,
B. S.
Richards
, and
R. A.
Sinton
,
Prog. Photovoltaics
16
,
609
(
2008
).
18.
E.
Cartier
and
J. H.
Stathis
,
Microelectron. Eng.
28
,
3
(
1995
).
19.
20.
S. N.
Rashkeev
,
D. M.
Fleetwood
,
R. D.
Schrimpf
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
87
,
165506
(
2001
).
21.
C. P.
Herrero
,
M.
Stutzmann
,
A.
Breitschwerdt
, and
P. V.
Santos
,
Phys. Rev. B
41
,
1054
(
1990
).
You do not currently have access to this content.