Optical metamaterials capture the imagination with breathtaking promises of nanoscale resolution in imaging and invisibility cloaking. We demonstrate an approach to construct a metamaterial in which metallic nanorods, of dimension much smaller than the wavelength of light, are suspended in a fluid and placed in a nonuniform electric field. The field controls the spatial distribution and orientation of nanorods because of the dielectrophoretic effect. The field-controlled placement of nanorods causes optical effects such as varying refractive index, optical anisotropy (birefringence), and reduced visibility of an object enclosed by the metamaterial.

1.
J. B.
Pendry
,
D.
Schurig
, and
D. R.
Smith
,
Science
312
,
1780
(
2006
).
2.
U.
Leonhardt
,
Science
312
,
1777
(
2006
).
3.
W.
Cai
,
U. K.
Chettiar
,
A. V.
Kildishev
, and
V. M.
Shalaev
,
Nat. Photonics
1
,
224
(
2007
).
4.
I. I.
Smolyaninov
,
Y. J.
Huang
, and
C. C.
Davis
,
Opt. Lett.
33
,
1342
(
2008
).
5.
J.
Valentine
,
J. S.
Li
,
T.
Zentgraf
,
G.
Bartal
, and
X.
Zhang
,
Nature Mater.
8
,
568
(
2009
).
6.
H.
Morgan
and
N. G.
Green
,
AC Electrokinetics: Colloids and Nanoparticles
(
Research Studies
,
Baldock, England
,
2003
).
7.
P. A.
Smith
,
C. D.
Nordquist
,
T. N.
Jackson
,
T. S.
Mayer
,
B. R.
Martin
,
J.
Mbindyo
, and
T. E.
Mallouk
,
Appl. Phys. Lett.
77
,
1399
(
2000
).
8.
H. W.
Seo
,
C. S.
Han
,
S. O.
Hwang
, and
J.
Park
,
Nanotechnology
17
,
3388
(
2006
).
9.
S. J.
Papadakis
,
Z.
Gu
, and
D. H.
Gracias
,
Appl. Phys. Lett.
88
,
233118
(
2006
).
10.
B.
Edwards
,
N.
Engheta
, and
S.
Evoy
,
J. Appl. Phys.
102
,
024913
(
2007
).
11.
J. J.
Boote
and
S. D.
Evans
,
Nanotechnology
16
,
1500
(
2005
).
12.
J.
Fontana
,
A.
Agarwal
,
N.
Kotov
, and
P.
Palffy-Muhoray
,
American Physical Society March Meeting
, Pittsburgh, PA, 16 March
2009
(unpublished).
13.
Z.
Nie
,
D.
Fava
,
E.
Kumacheva
,
S.
Zou
,
G. C.
Walker
, and
M.
Rubinstein
,
Nature Mater.
6
,
609
(
2007
).
14.
M.
Kleman
and
O. D.
Lavrentovich
,
Soft Matter Physics: An Introduction
(
Springer
,
New York
,
2003
), pp.
96
98
.
15.
Interestingly, k(x) decreases near the very surface of electrodes, which might indicate a NR-depleted thin layer associated with osmotic or electrostatic surface effects.
16.
Yu. A.
Nastishin
,
H.
Liu
,
T.
Schneider
,
V.
Nazarenko
,
R.
Vasyuta
,
S. V.
Shiyanovskii
, and
O. D.
Lavrentovich
,
Phys. Rev. E
72
,
041711
(
2005
).
17.
I.
El-Kady
,
M. M.
Sigalas
,
R.
Biswas
,
K. M.
Ho
, and
C. M.
Soukoulis
,
Phys. Rev. B
62
,
15299
(
2000
).
18.
M.
Jiao
,
S.
Gauza
,
Y.
Li
,
J.
Yan
,
S. T.
Wu
, and
T.
Chiba
,
Appl. Phys. Lett.
94
,
101107
(
2009
).
19.
M. V.
Sapozhnikov
,
Y.
Tolmachev
,
I. S.
Aranson
, and
W. K.
Kwok
,
Phys. Rev. Lett.
90
,
114301
(
2003
).
20.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3278442 for the detailed experimental procedures and electrically controlled optical effects.

Supplementary Material

You do not currently have access to this content.