Optical metamaterials capture the imagination with breathtaking promises of nanoscale resolution in imaging and invisibility cloaking. We demonstrate an approach to construct a metamaterial in which metallic nanorods, of dimension much smaller than the wavelength of light, are suspended in a fluid and placed in a nonuniform electric field. The field controls the spatial distribution and orientation of nanorods because of the dielectrophoretic effect. The field-controlled placement of nanorods causes optical effects such as varying refractive index, optical anisotropy (birefringence), and reduced visibility of an object enclosed by the metamaterial.
REFERENCES
1.
J. B.
Pendry
, D.
Schurig
, and D. R.
Smith
, Science
312
, 1780
(2006
).2.
U.
Leonhardt
, Science
312
, 1777
(2006
).3.
W.
Cai
, U. K.
Chettiar
, A. V.
Kildishev
, and V. M.
Shalaev
, Nat. Photonics
1
, 224
(2007
).4.
I. I.
Smolyaninov
, Y. J.
Huang
, and C. C.
Davis
, Opt. Lett.
33
, 1342
(2008
).5.
J.
Valentine
, J. S.
Li
, T.
Zentgraf
, G.
Bartal
, and X.
Zhang
, Nature Mater.
8
, 568
(2009
).6.
H.
Morgan
and N. G.
Green
, AC Electrokinetics: Colloids and Nanoparticles
(Research Studies
, Baldock, England
, 2003
).7.
P. A.
Smith
, C. D.
Nordquist
, T. N.
Jackson
, T. S.
Mayer
, B. R.
Martin
, J.
Mbindyo
, and T. E.
Mallouk
, Appl. Phys. Lett.
77
, 1399
(2000
).8.
H. W.
Seo
, C. S.
Han
, S. O.
Hwang
, and J.
Park
, Nanotechnology
17
, 3388
(2006
).9.
S. J.
Papadakis
, Z.
Gu
, and D. H.
Gracias
, Appl. Phys. Lett.
88
, 233118
(2006
).10.
B.
Edwards
, N.
Engheta
, and S.
Evoy
, J. Appl. Phys.
102
, 024913
(2007
).11.
J. J.
Boote
and S. D.
Evans
, Nanotechnology
16
, 1500
(2005
).12.
J.
Fontana
, A.
Agarwal
, N.
Kotov
, and P.
Palffy-Muhoray
, American Physical Society March Meeting
, Pittsburgh, PA, 16 March 2009
(unpublished).13.
Z.
Nie
, D.
Fava
, E.
Kumacheva
, S.
Zou
, G. C.
Walker
, and M.
Rubinstein
, Nature Mater.
6
, 609
(2007
).14.
M.
Kleman
and O. D.
Lavrentovich
, Soft Matter Physics: An Introduction
(Springer
, New York
, 2003
), pp. 96
–98
.15.
Interestingly, decreases near the very surface of electrodes, which might indicate a NR-depleted thin layer associated with osmotic or electrostatic surface effects.
16.
Yu. A.
Nastishin
, H.
Liu
, T.
Schneider
, V.
Nazarenko
, R.
Vasyuta
, S. V.
Shiyanovskii
, and O. D.
Lavrentovich
, Phys. Rev. E
72
, 041711
(2005
).17.
I.
El-Kady
, M. M.
Sigalas
, R.
Biswas
, K. M.
Ho
, and C. M.
Soukoulis
, Phys. Rev. B
62
, 15299
(2000
).18.
M.
Jiao
, S.
Gauza
, Y.
Li
, J.
Yan
, S. T.
Wu
, and T.
Chiba
, Appl. Phys. Lett.
94
, 101107
(2009
).19.
M. V.
Sapozhnikov
, Y.
Tolmachev
, I. S.
Aranson
, and W. K.
Kwok
, Phys. Rev. Lett.
90
, 114301
(2003
).20.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3278442 for the detailed experimental procedures and electrically controlled optical effects.
© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.