We demonstrate that the porous silicon nanowires (SiNWs) prepared by metal-assisted chemical etching method could impart sensitivity of nanowire electrical properties to gaseous nitrogen oxide (NO) at room temperature, thus are suitable for sensing NO and air monitoring. Particularly, the sensors made from the porous SiNWs assembly showed fast response and excellent reversibility to subparts per million NO concentrations. The excellent sensing performance coupled with scalable synthesis of porous SiNWs could open up opportunities in scalable production of sensor chips working at room temperature.

1.
A. M.
Morales
and
C. M.
Lieber
,
Science
279
,
208
(
1998
).
2.
D. D. D.
Ma
,
C. S.
Lee
,
F. C. K.
Au
,
S. Y.
Tong
, and
S. T.
Lee
,
Science
299
,
1874
(
2003
).
3.
M.
Law
,
L. E.
Greene
,
J. C.
Johnson
,
R.
Saykally
, and
P. D.
Yang
,
Nature Mater.
4
,
455
(
2005
).
4.
Y.
Li
,
F.
Qian
,
J.
Xiang
, and
C. M.
Lieber
,
Mater. Today
9
,
18
(
2006
).
5.
C. M.
Lieber
and
Z. L.
Wang
,
MRS Bull.
32
,
99
(
2007
).
6.
Y.
Cui
and
C. M.
Lieber
,
Science
291
,
851
(
2001
).
7.
Y.
Huang
,
X. F.
Duan
,
Y.
Cui
,
L. J.
Lauhon
,
K. H.
Kim
, and
C. M.
Lieber
,
Science
294
,
1313
(
2001
).
8.
K.
Peng
,
Y.
Xu
,
Y.
Wu
,
Y.
Yan
,
S. T.
Lee
, and
J.
Zhu
,
Small
1
,
1062
(
2005
).
9.
B.
Tian
,
X.
Zheng
,
T. J.
Kempa
,
Y.
Fang
,
N.
Yu
,
J.
Huang
, and
C. M.
Lieber
,
Nature (London)
449
,
885
(
2007
).
10.
A. I.
Hochbaum
,
R. K.
Chen
,
R. D.
Delgado
,
W. J.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P. D.
Yang
,
Nature (London)
451
,
163
(
2008
).
11.
C. K.
Chan
,
H.
Peng
,
G.
Liu
,
K.
McIlwrath
,
X.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
12.
G.
Zheng
,
F.
Patolsky
,
Y.
Cui
,
W. U.
Wang
, and
C. M.
Lieber
,
Nat. Biotechnol.
23
,
1294
(
2005
).
13.
W. W.
Chen
,
H.
Yao
,
C. H.
Tzang
,
J. J.
Zhu
,
M. S.
Yang
, and
S. T.
Lee
,
Appl. Phys. Lett.
88
,
213104
(
2006
).
14.
V.
Schmidt
,
J. V.
Wittemann
,
S.
Senz
, and
U.
Gösele
,
Adv. Mater.
21
,
2681
(
2009
).
15.
K. Q.
Peng
,
Y. J.
Yan
,
S. P.
Gao
, and
J.
Zhu
,
Adv. Mater.
14
,
1164
(
2002
).
16.
K. Q.
Peng
,
Y. J.
Yan
,
S. P.
Gao
, and
J.
Zhu
,
Adv. Funct. Mater.
13
,
127
(
2003
).
17.
K. Q.
Peng
,
A. J.
Lu
,
R. Q.
Zhang
, and
S. T.
Lee
,
Adv. Funct. Mater.
18
,
3026
(
2008
).
18.
K. Q.
Peng
,
Y.
Wu
,
H.
Fang
,
X. Y.
Zhong
,
Y.
Xu
, and
J.
Zhu
,
Angew. Chem. Int. Ed.
44
,
2737
(
2005
).
19.
K. Q.
Peng
,
M. L.
Zhang
,
A. J.
Lu
,
N. B.
Wong
,
R. Q.
Zhang
, and
S. T.
Lee
,
Appl. Phys. Lett.
90
,
163123
(
2007
).
20.
K. Q.
Peng
,
Z. P.
Huang
, and
J.
Zhu
,
Adv. Mater.
16
,
73
(
2004
).
21.
K.
Peng
,
J.
Jie
,
W.
Zhang
, and
S. T.
Lee
,
Appl. Phys. Lett.
93
,
033105
(
2008
).
22.
K.
Peng
,
X.
Wang
, and
S. T.
Lee
,
Appl. Phys. Lett.
92
,
163103
(
2008
).
23.
E. C.
Garnett
and
P. D.
Yang
,
J. Am. Chem. Soc.
130
,
9224
(
2008
).
24.
K. Q.
Peng
,
X.
Wang
,
X. L.
Wu
, and
S. T.
Lee
,
Nano Lett.
9
,
3704
(
2009
).
You do not currently have access to this content.