We develop supercapacitor (SC) devices with large per-area capacitances by utilizing three-dimensional (3D) porous substrates. Carbon nanofibers (CNFs) functioning as active SC electrodes are grown on 3D nickel foam. The 3D porous substrates facilitate a mass loading of active electrodes and per-area capacitance as large as 60mg/cm2 and 1.2F/cm2, respectively. We optimize SC performance by developing an annealing-free CNF growth process that minimizes undesirable nickel carbide formation. Superior per-area capacitances described here suggest that 3D porous substrates are useful in various energy storage devices in which per-area performance is critical.

1.
K.
An
,
W.
Kim
,
Y.
Park
,
J.
Moon
,
D.
Bae
,
S.
Lim
,
Y.
Lee
, and
Y.
Lee
,
Adv. Funct. Mater.
11
,
387
(
2001
).
2.
D. N.
Futaba
,
K.
Hada
,
T.
Yamada
,
T.
Hiraoka
,
Y.
Hayamizu
,
Y.
Kakudate
,
O.
Tanake
,
H.
Hatori
,
M.
Yumura
, and
S.
Iijima
,
Nature Mater.
5
,
987
(
2006
).
3.
C.
Du
,
J.
Yeh
, and
N.
Pan
,
Nanotechnology
16
,
350
(
2005
).
4.
C.
Niu
,
E. K.
Sichel
,
R.
Hoch
,
D.
Moy
, and
H.
Tennent
,
Appl. Phys. Lett.
70
,
1480
(
1997
).
5.
C.
Huang
,
Y.
Wu
,
C.
Hu
, and
Y.
Li
,
J. Power Sources
172
,
460
(
2007
).
6.
F.
Pico
,
J. M.
Rojo
,
M. L.
Sanjuan
,
A.
Anson
,
A. M.
Benito
,
M. A.
Callejas
,
W. K.
Maser
, and
M. T.
Martinez
,
J. Electrochem. Soc.
151
,
A831
(
2004
).
7.
G.
Lv
,
D.
Wu
, and
R.
Fu
,
J. Non-Cryst. Solids
355
,
2461
(
2009
).
8.
J. K.
Chinthaginjala
,
D. B.
Thakur
,
K.
Seshan
, and
L.
Lefferts
,
Carbon
46
,
1638
(
2008
).
9.
H.
Dai
,
Carbon nanotubes: Synthesis, Structure, Properties and Application
(
Springer
,
New York
,
2001
), pp.
29
54
.
10.
See EPAPS supplementary material at http://dx.doi.org/10.1063/1.3273864 for supercapacitor cell preparation and data analysis, supercapacitor impedance data and capacity retention, and TEM characterization of carbon nanofibers..

Supplementary Material

You do not currently have access to this content.