We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that makes them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of Ca++ ions can be exhibited through this approach.

1.
L. H.
Miller
,
D. I.
Baruch
,
K.
Marsh
, and
O. K.
Doumbo
,
Nature (London)
415
,
673
(
2002
).
2.
D. E.
Discher
,
N.
Mohandas
, and
E. A.
Evans
,
Science
266
,
1032
(
1994
).
3.
F. K.
Glenister
,
R. L.
Copper
,
A. F.
Cowman
,
N.
Mohandas
, and
B. M.
Cooke
,
Blood
99
,
1060
(
2002
).
4.
S.
Chien
,
K. L. P.
Sung
,
R.
Skalak
, and
S.
Usami
,
Biophys. J.
24
,
463
(
1978
).
5.
K.
Svoboda
,
C. F.
Schmidt
,
D.
Branton
, and
S. M.
Block
,
Biophys. J.
63
,
784
(
1992
).
6.
M.
Dao
,
C. T.
Lim
, and
S.
Suresh
,
J. Mech. Phys. Solids
51
,
2259
(
2003
).
7.
Y. P. L. C.
Li
,
K. K.
Liu
, and
A. C. K.
Lai
,
Med. Eng. & Physics
28
,
830
(
2006
).
8.
C.
Li
and
K. K.
Liu
,
J. Mater. Sci.: Mater. Med.
19
,
1529
(
2008
).
9.
R. M.
Hochmuth
,
E. A.
Evans
, and
D. F.
Colvard
,
Microvasc. Res.
11
,
155
(
1976
).
10.
M.
Puig-de-Morales-Marinkovic
,
K. T.
Turner
,
J. P.
Butler
,
J. J.
Fredberg
, and
S.
Suresh
,
Am. J. Physiol. Cell Physiol.
293
,
C597
(
2007
).
11.
H.
Engelhardt
and
E.
Sackmann
,
Biophys. J.
54
,
495
(
1988
).
12.
T.
Suda
,
N.
Maeda
,
D.
Shimizu
,
E.
Kamitsubo
, and
T.
Shiga
,
Biorheology
19
(
4
),
555
(
1982
).
13.
A.
Seiyama
,
Y.
Suzuki
, and
N.
Maeda
,
Colloid Polym. Sci.
271
,
63
(
1993
).
14.
B. D.
Riquelme
,
J.
Valverde
, and
R. J.
Rasia
,
Biorheology
35
,
325
(
1998
).
15.
A.
Drochon
,
Eur. Phys. J.: Appl. Phys.
22
,
155
(
2003
).
16.
J. A.
Dharmadhikari
,
S.
Roy
,
A. K.
Dharmadhikari
,
S.
Sharma
, and
D.
Mathur
,
Appl. Phys. Lett.
85
,
6048
(
2004
).
17.
T. H.
Ham
,
R. F.
Dunn
,
R. W.
Sayre
, and
J. R.
Murphy
,
Blood
32
(
6
),
847
(
1968
).
18.
P.
Galajda
and
P.
Ormos
,
Appl. Phys. Lett.
78
,
249
(
2001
).
19.
M.
Khan
,
A. K.
Sood
,
F. L.
Deepak
, and
C. N. R.
Rao
,
Nanotechnology
17
,
S287
(
2006
).
20.
M.
Khan
,
A. K.
Sood
,
F. L.
Deepak
, and
C. N. R.
Rao
,
J. Nanosci. Nanotechnol.
7
,
1800
(
2007
).
21.
M.
Khan
,
S. K.
Mohanty
, and
A. K.
Sood
,
Pramana, J. Phys.
65
,
777
(
2005
).
22.
S. K.
Mohanty
,
K. S.
Mohanty
, and
P. K.
Gupta
,
Opt. Express
13
,
4745
(
2005
).
23.
D. R.
Anderson
,
J. L.
Davis
, and
K. L.
Carraway
,
J. Biol. Chem.
252
(
19
),
6617
(
1977
).
24.
E. E.
Quist
,
Biochem. Biophys. Res. Commun.
92
,
631
(
1980
).
25.
R. S.
Vest
,
L. J.
Gonzales
,
S. A.
Permann
,
E.
Spencer
,
L. D.
Hansen
,
A. M.
Judd
, and
J. D.
Bell
,
Biophys. J.
86
,
2251
(
2004
).
You do not currently have access to this content.