We have improved the performance of pentacene field-effect transistors by using highly conductive poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) source-drain electrodes (103S/cm) formed by a simple solution-based process. A high field-effect mobility of 0.25cm2/Vs and an ON/OFF current ratio of 107 were obtained in pentacene-based bottom contact organic field-effect transistors (OFETs), which constitutes an improvement over OFETs based on Au and PEDOT:PSS electrodes. Two-dimensional grazing incidence x-ray diffraction and ultraviolet photoemission spectroscopy results confirmed that the crystalline properties of the pentacene film and the hole injection from the PEDOT-Tos electrode to the pentacene layer are more efficient than those from Au and PEDOT:PSS electrodes.

1.
S. R.
Forrest
,
Nature (London)
428
,
911
(
2004
).
2.
M. M.
Ling
and
Z. N.
Bao
,
Chem. Mater.
16
,
4824
(
2004
).
3.
G.
Horowitz
,
J. Mater. Res.
19
,
1946
(
2004
).
4.
B. L.
Groenendaal
,
F.
Jonas
,
D.
Freitag
,
H.
Pielartzik
, and
J. R.
Reynolds
,
Adv. Mater.
12
,
481
(
2000
).
5.
X.
Crispin
,
S.
Marciniak
,
W.
Osikowicz
,
G.
Zotti
,
A. W. D.
Van der Gon
,
F.
Louwet
,
M.
Fahlman
,
L.
Groenendaal
,
F.
De Schryver
, and
W. R.
Salaneck
,
J. Polym. Sci., B, Polym. Phys.
41
,
2561
(
2003
).
6.
H.
Sirringhaus
,
T.
Kawase
,
R. H.
Friend
,
T.
Shimoda
,
M.
Inbasekaran
,
W.
Wu
, and
E. P.
Woo
,
Science
290
,
2123
(
2000
).
7.
J. A.
Lim
,
J. H.
Cho
,
Y. D.
Park
,
D. H.
Kim
,
M.
Hwang
, and
K.
Cho
,
Appl. Phys. Lett.
88
,
082102
(
2006
).
8.
K.
Hong
,
S. Y.
Yang
,
C.
Yang
,
S. H.
Kim
,
D.
Choi
, and
C. E.
Park
,
Org. Electron.
9
,
864
(
2008
).
9.
X.
Crispin
,
F. L. E.
Jakobsson
,
A.
Crispin
,
P. C. M.
Grim
,
P.
Andersson
,
A.
Volodin
,
C.
van Haesendonck
,
M.
Van der Auweraer
,
W. R.
Salaneck
, and
M.
Berggren
,
Chem. Mater.
18
,
4354
(
2006
).
10.
B.
Winther-Jensen
and
K.
West
,
Macromolecules
37
,
4538
(
2004
).
11.
L.
Lindell
,
A.
Burquel
,
F. L. E.
Jakobsson
,
V.
Lemaur
,
M.
Berggren
,
R.
Lazzaroni
,
J.
Cornil
,
W. R.
Salaneck
, and
X.
Crispin
,
Chem. Mater.
18
,
4246
(
2006
).
12.
N.
Koch
,
A.
Kahn
,
J.
Ghijsen
,
J. J.
Pireaux
,
J.
Schwartz
,
R. L.
Johnson
, and
A.
Elschner
,
Appl. Phys. Lett.
82
,
70
(
2003
).
13.
C. R.
Newman
,
C. D.
Frisbie
,
D. A.
da Silva
,
J. L.
Bredas
,
P. C.
Ewbank
, and
K. R.
Mann
,
Chem. Mater.
16
,
4436
(
2004
).
14.
K. S. H.
Ishii
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
(
1999
).
15.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlman
,
Adv. Mater.
21
,
1450
(
2009
).
16.
J. H.
Kang
and
X. Y.
Zhu
,
Appl. Phys. Lett.
82
,
3248
(
2003
).
17.
H. S.
Lee
,
D. H.
Kim
,
J. H.
Cho
,
M.
Hwang
,
Y.
Jang
, and
K.
Cho
,
J. Am. Chem. Soc.
130
,
10556
(
2008
).
18.
C.
Kim
,
A.
Facchetti
, and
T. J.
Marks
,
Adv. Mater.
19
,
2561
(
2007
).
19.
H.
Vazquez
,
F.
Flores
,
R.
Oszwaldowski
,
J.
Ortega
,
R.
Perez
, and
A.
Kahn
,
Appl. Surf. Sci.
234
,
107
(
2004
).
20.
J. Z.
Wang
,
J. F.
Chang
, and
H.
Sirringhaus
,
Appl. Phys. Lett.
87
,
083503
(
2005
).
21.
N.
Koch
,
A.
Elschner
,
J. P.
Rabe
, and
R. L.
Johnson
,
Adv. Mater.
17
,
330
(
2005
).
You do not currently have access to this content.