The effect of structural relaxation on shear transformation zones (STZs) in a Zr70Ni16Cu6Al8 glassy alloy is evaluated. Upon annealing, the measured STZ size dramatically decreases with moderate augment of mass density caused by the increase of icosahedra short-range orders. The greater atomic packing density gives rise to involvement of lesser atoms in the formation of STZs and thereby degradation of ductility. This study demonstrates that STZ volume is a key parameter reflecting the intrinsic relationship between atomic structure and mechanical properties of metallic glasses.

1.
P.
Chaudhari
and
D.
Turnbull
,
Science
199
,
11
(
1978
).
4.
6.
M. L.
Falk
and
J. S.
Langer
,
Phys. Rev. E
57
,
7192
(
1998
).
7.
W. L.
Johnson
and
K.
Samwer
,
Phys. Rev. Lett.
95
,
195501
(
2005
).
8.
9.
Y. H.
Liu
,
C. T.
Liu
,
W. H.
Wang
,
A.
Inoue
,
T.
Sakurai
, and
M. W.
Chen
,
Phys. Rev. Lett.
103
,
065504
(
2009
).
10.
D.
Pan
,
A.
Inoue
,
T.
Sakurai
, and
M. W.
Chen
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
14769
(
2008
).
11.
D.
Pan
and
M. W.
Chen
,
J. Mater. Res.
24
,
1466
(
2009
).
12.
Y.
Yokoyama
,
T.
Yamasaki
,
P. K.
Liaw
, and
A.
Inoue
,
Acta Mater.
56
,
6097
(
2008
).
13.
B. G.
Yoo
,
K. W.
Park
,
J. C.
Lee
,
U.
Ramamurty
, and
J.
Jang
,
J. Mater. Res.
24
,
1405
(
2009
).
14.
Y.
Yokoyama
,
K.
Fujita
,
A. R.
Yavari
, and
A.
Inoue
,
Philos. Mag. Lett.
89
,
322
(
2009
).
15.
A. L.
Greer
, in
Rapidly Solidified Alloys
, edited by
H. H.
Liebermann
(
Marcel Dekker
,
New York
,
1993
), pp.
273
279
.
16.
H. W.
Sheng
,
E.
Ma
,
H. Z.
Liu
, and
J.
Wen
,
Appl. Phys. Lett.
88
,
171906
(
2006
).
17.
D.
Ma
,
A. D.
Stoica
, and
X. -L.
Wang
,
Nature Mater.
8
,
30
(
2009
).
18.
S.
Sachdev
and
D. R.
Nelson
,
Phys. Rev. Lett.
53
,
1947
(
1984
).
19.
W. K.
Luo
,
H. W.
Sheng
,
F. M.
Alamgir
,
J. M.
Bai
,
J. H.
He
, and
E.
Ma
,
Phys. Rev. Lett.
92
,
145502
(
2004
).
20.
T.
Egami
and
S. J. L.
Billinge
,
Underneath the Bragg Peaks: Structural Analysis of Complex Materials
, 1st ed. (
Pergamon
,
Oxford, UK
,
2003
), pp.
59
61
.
21.
D.
Pan
,
T. G.
Nieh
, and
M. W.
Chen
,
Appl. Phys. Lett.
88
,
161922
(
2006
).
22.
It is noteworthy that the unique deformation features of instrumented indentation technique enable itself to viably characterize the STZ volume of BMGs. In an indentation test, the plastic deformation volume keeps expanding in company with increase of indentation depth, viz. upon continuous “plowing” of the indenter into the sample, the deformation zone becomes bigger by a certain amount of plastically undeformed volume getting involved in the plastic deformation process, different from a constant deformation volume in a uniaxial compression test. The deformed zone, although it may undergo possible structural change such as dilatation effect by free volume, may solely make a minor contribution to the succeeding mechanical behavior whereas the “new” plastic deformation volume is primarily responsible for the macroscopic mechanical response. Indeed, when the indentation size effect of hardness (Ref. 23) is taken into account, the contact pressure at later stage of deformation stays essentially constant upon increase of plastic strain/depth, instead of continuously softening/hardening caused by structural evolution.
23.
W. D.
Nix
and
H.
Gao
,
J. Mech. Phys. Solids
46
,
411
(
1998
).
24.
N. K.
Mukhopadhyay
and
P.
Paufler
,
Int. Mater. Rev.
51
,
209
(
2006
).
25.
A. R.
Yavari
,
A.
Le Moulec
,
A.
Inoue
,
N.
Nishiyama
,
N.
Lupu
,
E.
Matsubara
,
W. J.
Botta
,
G.
Vaughan
,
M.
Di Michiel
, and
A.
Kvick
,
Acta Mater.
53
,
1611
(
2005
).
You do not currently have access to this content.