Thin film heterojunction solar cells such as those based on the chalcopyrites or amorphous silicon are often limited by interface recombination at the active heterointerface. A new strategy to overcome this limitation is described, replacing the conventional wider band gap contact material with a combination of a passivation layer plus the conventional contact in a point contact type structure. This is similar to the established method to minimize rear contact recombination in crystalline silicon solar cells. Here point contacts at the heterointerface of a CuInS2 based solar cell are modeled using the WIAS-TeSCA code. The importance of the donor defect energy level at the absorber/passivation interface is shown, and a way to improve the cell efficiency by >25% (relative) is outlined.

1.
I.
Repins
,
M. A.
Contreras
,
B.
Egaas
,
C.
DeHart
,
J.
Scharf
,
C. L.
Perkins
,
B.
To
, and
R.
Noufi
,
Prog. Photovoltaics
16
,
235
(
2008
).
2.
M.
Turcu
and
U.
Rau
,
J. Phys. Chem. Solids
64
,
1591
(
2003
).
3.
4.
M.
Gloeckler
and
J. R.
Sites
,
Thin Solid Films
480
,
241
(
2005
).
5.
R. R.
King
,
R. A.
Sinton
, and
R. M.
Swanson
,
Appl. Phys. Lett.
54
,
1460
(
1989
).
6.
WIAS-TeSCAModeling and Simulation of Semiconductor Devices, http://www.wias-berlin.de/software/tesca.
7.
H.
Gajewski
,
Mitt. Ges. Angew. Math. Mech.
16
,
35
(
1993
).
8.
H.
Gajewski
,
H. -Chr.
Kaiser
,
H.
Langmach
,
R.
Nürnberg
, and
R. H.
Richter
, in
Mathematical Modeling and Numerical Simulation of Semiconductor Detectors
,
Mathematics-Key Technology for the Future
, edited by
W.
Jäger
and
H. -J.
Krebs
, (
Springer
,
New York
,
2003
), pp.
355
364
.
9.
N. A.
Allsop
,
C.
Camus
,
A.
Hänsel
,
S. E.
Gledhill
,
I.
Lauermann
,
M. C.
Lux-Steiner
, and
Ch. -H.
Fischer
,
Thin Solid Films
515
,
6068
(
2007
).
You do not currently have access to this content.