A dense array of ions in microfabricated traps represents one possible way to scale up ion trap quantum computing. The ability to address individual ions is an important component of such a scheme. We demonstrate individual addressing of trapped ions in a microfabricated surface-electrode trap using a magnetic field gradient generated on-chip. A frequency splitting of 310(2) kHz for two ions separated by 5μm is achieved. Selective single qubit operations are performed on one of two trapped ions with an average of 2.2(±1.0%) crosstalk. Coherence time is reduced by the magnetic field gradient, but the spin-echo technique effectively restores the coherence time.

1.
D. J.
Wineland
,
C.
Monroe
,
W. M.
Itano
,
D.
Leibfried
,
B. E.
King
, and
D. M.
Meekhof
,
J. Res. Natl. Inst. Stand. Technol.
103
,
259
(
1998
).
2.
F.
Schmidt-Kaler
,
H.
Häffner
,
M.
Riebe
,
S.
Gulde
,
G. P. T.
Lancaster
,
T.
Deuschle
,
C.
Becher
,
C.
Roos
,
J.
Eschner
, and
R.
Blatt
,
Nature (London)
422
,
408
(
2003
).
3.
M.
Riebe
,
H.
Häffner
,
C.
Roos
,
W.
Hänsel
,
J.
Benhelm
,
G.
Lancaster
,
T.
Körber
,
C.
Becher
,
F.
Schmidt-Kaler
,
D. F. V.
James
, and
R.
Blatt
,
Nature (London)
429
,
734
(
2004
).
4.
M. D.
Barrett
,
J.
Chiaverini
,
T.
Schaetz
,
J.
Britton
,
W. M.
Itano
,
J. D.
Jost
,
E.
Knill
,
C.
Langer
,
D.
Leibfried
,
R.
Ozeri
, and
D.
Wineland
,
Nature (London)
429
,
737
(
2004
).
5.
J.
Chiaverini
,
D.
Leibfried
,
T.
Schaetz
,
M.
Barrett
,
R.
Blakestad
,
J.
Britton
,
W.
Itano
,
J.
Jost
,
E.
Knill
,
C.
Langer
,
R.
Ozeri
, and
D.
Wineland
,
Nature (London)
432
,
602
(
2004
).
6.
R.
Blatt
and
D.
Wineland
,
Nature (London)
453
,
1008
(
2008
).
7.
H. C.
Nägerl
,
D.
Leibfried
,
H.
Rohde
,
G.
Thalhammer
,
J.
Eschner
,
F.
Schmidt-Kaler
, and
R.
Blatt
,
Phys. Rev. A
60
,
145
(
1999
).
8.
D.
Leibfried
,
E.
Knill
,
C.
Ospelkaus
, and
D. J.
Wineland
,
Phys. Rev. A
76
,
032324
(
2007
).
9.
P.
Staanum
and
M.
Drewsen
,
Phys. Rev. A
66
,
040302
(
2002
).
10.
P. C.
Haljan
,
P. J.
Lee
,
K. -A.
Brickman
,
M.
Acton
,
L.
Deslauriers
, and
C.
Monroe
,
Phys. Rev. A
72
,
062316
(
2005
).
11.
F.
Mintert
and
C.
Wunderlich
,
Phys. Rev. Lett.
87
,
257904
(
2001
).
12.
M.
Johanning
,
A.
Braun
,
N.
Timoney
,
V.
Elman
,
W.
Neuhauser
, and
C.
Wunderlich
,
Phys. Rev. Lett.
102
,
073004
(
2009
).
13.
D.
Schrader
,
I.
Dotsenko
,
M.
Khudaverdyan
,
Y.
Miroshnychenko
,
A.
Rauschenbeutel
, and
D.
Meschede
,
Phys. Rev. Lett.
93
,
150501
(
2004
).
14.
J.
Labaziewicz
,
Y.
Ge
,
P.
Antohi
,
D.
Leibrandt
,
K. R.
Brown
, and
I. L.
Chuang
,
Phys. Rev. Lett.
100
,
013001
(
2008
).
15.
J.
Labaziewicz
,
Y.
Ge
,
D.
Leibrandt
,
S. X.
Wang
,
R.
Shewmon
, and
I. L.
Chuang
,
Phys. Rev. Lett.
101
,
180602
(
2008
).
16.
C.
Balzer
,
A.
Braun
,
T.
Hannemann
,
C.
Paape
,
M.
Ettler
,
W.
Neuhauser
, and
C.
Wunderlich
,
Phys. Rev. A
73
,
041407
(
2006
).
17.
D. F. V.
James
,
Appl. Phys. B: Lasers Opt.
66
,
181
(
1998
).
18.
V.
Letchumanan
,
P.
Gill
,
E.
Riis
, and
A. G.
Sinclair
,
Phys. Rev. A
70
,
033419
(
2004
).
19.
L.
Aolita
,
L.
Davidovich
,
K.
Kim
, and
H.
Häffner
,
Phys. Rev. A
75
,
052337
(
2007
).
You do not currently have access to this content.