The partitioning behavior of W in a multicomponent Ni-based superalloy and in a ternary Ni–Al–W alloy is investigated using atom-probe tomography (APT) and first-principles calculations. APT observations indicate that whereas W partitions preferentially to the γ(L12)-precipitates in the ternary alloy, its partitioning behavior is reversed in favor of the γ(fcc)-matrix in the multicomponent alloy. First-principles calculations of the substitutional formation energies of W and Ta predict that Ta has a larger driving force for partitioning to the γ phase than W. This implies that Ta displaces W from the γ-precipitates into the γ-matrix in multicomponent alloys.

1.
R. C.
Reed
,
The Superalloys: Fundamentals and Applications
(
Cambridge University Press
,
New York
,
2006
), p.
372
.
2.
R. D.
Rawlings
and
A. E.
Staton-Bevan
,
J. Mater. Sci.
10
,
505
(
1975
).
3.
A.
Volek
,
F.
Pyczak
,
R. F.
Singer
, and
H.
Mughrabi
,
Scr. Mater.
52
,
141
(
2005
).
4.
D.
Blavette
,
E.
Cadel
,
C.
Pareige
,
B.
Deconihout
, and
P.
Caron
,
Microsc. Microanal.
13
,
464
(
2007
).
5.
R. C.
Reed
,
A. C.
Yeh
,
S.
Tin
,
S. S.
Babu
, and
M. K.
Miller
,
Scr. Mater.
51
,
327
(
2004
).
6.
T.
Yokokawa
,
M.
Osawa
,
K.
Nishida
,
T.
Kobayashi
,
Y.
Koizumi
, and
H.
Harada
,
Scr. Mater.
49
,
1041
(
2003
).
7.
K. E.
Yoon
,
D.
Isheim
,
R. D.
Noebe
, and
D. N.
Seidman
,
Interface Sci.
9
,
249
(
2001
).
8.
R.
Balamuralikrishnan
,
R.
Sankarasubramanian
,
M. P.
Pathak
,
K.
Muraleedharan
, and
N.
Das
,
Superalloys 2008
(
The Minerals, Metals, and Materials Society
,
Seven Springs, PA
,
2008
), p.
993
.
9.
T. M.
Pollock
and
S.
Tin
,
J. Propul. Power
22
,
361
(
2006
).
10.
C. K.
Sudbrack
,
D.
Isheim
,
R. D.
Noebe
,
N. S.
Jacobson
, and
D. N.
Seidman
,
Microsc. Microanal.
10
,
355
(
2004
).
11.
S.
Tin
and
T. M.
Pollock
,
Metall. Mater. Trans. A
34A
,
1953
(
2003
).
12.
B. W.
Krakauer
and
D. N.
Seidman
,
Rev. Sci. Instrum.
63
,
4071
(
1992
).
13.
D. N.
Seidman
,
Annu. Rev. Mater. Sci.
37
,
127
(
2007
).
14.
T. F.
Kelly
and
M. K.
Miller
,
Rev. Sci. Instrum.
78
,
031101
(
2007
).
15.
Y.
Zhou
,
C.
Booth-Morrison
, and
D. N.
Seidman
,
Microsc. Microanal.
14
,
571
(
2008
).
16.
O. C.
Hellman
and
D. N.
Seidman
,
Mater. Sci. Eng., A
327
,
24
(
2002
).
17.
C.
Booth-Morrison
,
Z.
Mao
,
R. D.
Noebe
, and
D. N.
Seidman
,
Appl. Phys. Lett.
93
,
033103
(
2008
).
18.
C.
Booth-Morrison
,
R. D.
Noebe
, and
D. N.
Seidman
,
Acta Mater.
57
,
909
(
2009
).
19.
Y.
Amouyal
,
Z.
Mao
, and
D. N.
Seidman
,
Appl. Phys. Lett.
93
,
201905
(
2008
).
20.
G.
Kresse
and
J.
Furthmuller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
21.
G.
Kresse
and
J.
Furthmueller
,
Phys. Rev. B
54
,
11169
(
1996
).
22.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
23.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
You do not currently have access to this content.