We present a principle for the temperature stabilization of photonic crystal (PhC) cavities based on optofluidics. We introduce an analytic method enabling a specific mode of a cavity to be made wavelength insensitive to changes in ambient temperature. Using this analysis, we experimentally demonstrate a PhC cavity with a quality factor of Q15000 that exhibits a temperature-independent resonance. Temperature-stable cavities constitute a major building block in the development of a large suite of applications from high-sensitivity sensor systems for chemical and biomedical applications to microlasers, optical filters, and switches.

1.
K. J.
Vahala
,
Nature (London)
424
,
839
(
2003
).
2.
S.
Noda
,
M.
Fujita
, and
T.
Asano
,
Nat. Photonics
1
,
449
(
2007
).
3.
D. F.
Dorfner
,
T.
Hurlimann
,
T.
Zabel
,
L. H.
Frandsen
,
G.
Abstreiter
, and
J. J.
Finley
,
Appl. Phys. Lett.
93
,
181103
(
2008
).
4.
E.
Chow
,
A.
Grot
,
L. W.
Mirkarimi
,
M.
Sigalas
, and
G.
Girolami
,
Opt. Lett.
29
,
1093
(
2004
).
5.
S.
Mandal
and
D.
Erickson
,
Opt. Express
16
,
1623
(
2008
).
6.
C.
Monat
,
P.
Domachuk
, and
B. J.
Eggleton
,
Nat. Photonics
1
,
106
(
2007
).
7.
D.
Erickson
,
T.
Rockwood
,
T.
Emery
,
A.
Scherer
, and
D.
Psaltis
,
Opt. Lett.
31
,
59
(
2006
).
8.
K.
Busch
,
S.
Lölkes
,
R. B.
Wehrspohn
, and
H.
Föll
,
Photonic Crystals-Advances in Design, Fabrication, and Characterization
(
Wiley
,
Berlin
,
2004
).
9.
C. L. C.
Smith
,
U.
Bog
,
S.
Tomljenovic-Hanic
,
M. W.
Lee
,
D. K.
Wu
,
L.
O’Faolain
,
C.
Monat
,
C.
Grillet
,
T. F.
Krauss
,
C.
Karnutsch
,
R. C.
McPhedran
, and
B. J.
Eggleton
,
Opt. Express
16
,
15887
(
2008
).
10.
U.
Bog
,
C. L. C.
Smith
,
M. W.
Lee
,
S.
Tomljenovic-Hanic
,
C.
Grillet
,
C.
Monat
,
L.
O'Faolain
,
C.
Karnutsch
,
T. F.
Krauss
,
R. C.
McPhedran
, and
B. J.
Eggleton
,
Opt. Lett.
33
,
2206
(
2008
).
11.
A.
Densmore
,
D. X.
Xu
,
S.
Janz
,
P.
Waldron
,
T.
Mischki
,
G.
Lopinski
,
A.
Delâge
,
J.
Lapointe
,
P.
Cheben
,
B.
Lamontagne
, and
J. H.
Schmid
,
Opt. Lett.
33
,
596
(
2008
).
12.
M.
Uenuma
and
T.
Moooka
,
Opt. Lett.
34
,
599
(
2009
).
13.
T.
Wei
,
Y.
Han
,
Y.
Li
,
H. -L.
Tsai
, and
H.
Xiao
,
Opt. Express
16
,
5764
(
2008
).
14.
S. M.
Weiss
,
M.
Molinari
, and
P. M.
Fauchet
,
Appl. Phys. Lett.
83
,
1980
(
2003
).
15.
N.
Mothe
,
D.
Pagnoux
,
M. C.
Phan Huy
,
V.
Dewinter
,
G.
Laffont
, and
P.
Ferdinand
,
Opt. Express
16
,
19018
(
2008
).
16.
T.
Asano
,
B. S.
Song
, and
S.
Noda
,
Opt. Express
14
,
1996
(
2006
).
17.
F. G.
Della Corte
,
G.
Cocorullo
,
M.
Iodice
, and
I.
Rendina
,
Appl. Phys. Lett.
77
,
1614
(
2000
).
18.
C. B.
Kim
and
C. B.
Su
,
Meas. Sci. Technol.
15
,
1683
(
2004
).
19.
Z.
Zhang
,
P.
Zhao
,
P.
Lin
, and
F.
Sun
,
Polymer
47
,
4893
(
2006
).
20.
N. A.
Mortensen
,
S.
Xiao
, and
J.
Pedersen
,
Microfluid. Nanofluid.
4
,
117
(
2008
).
21.
Cargille Homepage, http://www.cargille.com/.
22.
S.
Tomljenovic-Hanic
,
C. M.
de Sterke
, and
M. J.
Steel
,
Opt. Express
14
,
12451
(
2006
).
23.
H. H.
Li
,
J. Phys. Chem. Ref. Data
9
,
561
(
1980
).
24.
M. W.
Lee
,
C.
Grillet
,
C. G.
Poulton
,
C.
Monat
,
C. L.
Smith
,
E.
Mägi
,
D.
Freeman
,
S.
Madden
,
B.
Luther-Davies
, and
B. J.
Eggleton
,
Opt. Express
16
,
13800
(
2008
).
25.
C. -Y.
Chao
,
W.
Fung
, and
L. J.
Guo
,
IEEE J. Sel. Top. Quantum Electron.
12
,
134
(
2006
).
You do not currently have access to this content.