The silane dissociation efficiency, or depletion fraction, is an important plasma parameter by means of which the film growth rate and the amorphous-to-microcrystalline silicon transition regime can be monitored in situ. In this letter we implement a homebuilt quantum cascade laser-based absorption spectrometer to measure the silane dissociation efficiency in an industrial plasma-enhanced chemical vapor deposition system. This infrared laser-based diagnostic technique is compact, sensitive, and nonintrusive. Its resolution is good enough to resolve Doppler-broadened rotovibrational absorption lines of silane. The latter feature various absorption strengths, thereby enabling depletion measurements over a wide range of process conditions.

1.
B.
Strahm
,
A. A.
Howling
,
L.
Sansonnens
, and
C.
Hollenstein
,
Plasma Sources Sci. Technol.
16
,
80
(
2007
).
2.
M. N.
van den Donker
,
B.
Rech
,
F.
Finger
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
Appl. Phys. Lett.
87
,
263503
(
2005
).
3.
G.
Dingemans
,
M. N.
van den Donker
,
A.
Gordijn
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
Appl. Phys. Lett.
91
,
161902
(
2007
).
4.
J. R.
Doyle
,
D. A.
Doughty
, and
A.
Gallagher
,
J. Appl. Phys.
68
,
4375
(
1990
).
5.
M. N.
van den Donker
,
B.
Rech
,
W. M. M.
Kessels
, and
M. C. M.
van de Sanden
,
New J. Phys.
9
,
280
(
2007
).
6.
S.
Nunomura
,
I.
Yoshida
, and
M.
Kondo
,
Appl. Phys. Lett.
94
,
071502
(
2009
).
7.
L.
Sansonnens
,
A. A.
Howling
, and
C.
Hollenstein
,
Plasma Sources Sci. Technol.
7
,
114
(
1998
).
8.
A. A.
Howling
,
B.
Strahm
,
P.
Colsters
,
L.
Sansonnens
, and
C.
Hollenstein
,
Plasma Sources Sci. Technol.
16
,
679
(
2007
).
9.
P.
Chollet
,
G.
Guelachvili
,
M.
Morillon-Chapey
,
P.
Gressier
, and
J. P. M.
Schmitt
,
J. Opt. Soc. Am. B
3
,
687
(
1986
).
10.
S. W.
Sharpe
,
T. J.
Johnson
,
R. L.
Sams
,
P. M.
Chu
,
G. C.
Rhoderick
, and
P. A.
Johnson
,
Appl. Spectrosc.
58
,
1452
(
2004
).
11.
M. W.
Sigrist
,
R.
Bartlome
,
D.
Marinov
,
J. M.
Rey
,
D. E.
Vogler
, and
H.
Wachter
,
Appl. Phys. B: Lasers Opt.
90
,
289
(
2008
).
12.
M.
Beck
,
D.
Hofstetter
,
T.
Aellen
,
J.
Faist
,
U.
Oesterle
,
M.
Ilegems
,
E.
Gini
, and
H.
Melchior
,
Science
295
,
301
(
2002
).
13.
G.
Duxbury
,
N.
Langford
,
M. T.
McCulloch
, and
S.
Wright
,
Chem. Soc. Rev.
34
,
921
(
2005
).
14.
A.
Kosterev
,
G.
Wysocki
,
Y.
Bakhirkin
,
S.
So
,
R.
Lewicki
,
M.
Fraser
,
F.
Tittel
, and
R. F.
Curl
,
Appl. Phys. B: Lasers Opt.
90
,
165
(
2008
).
15.
J.
Ropcke
,
S.
Welzel
,
N.
Lang
,
F.
Hempel
,
L.
Gatilova
,
O.
Guaitella
,
A.
Rousseau
, and
P. B.
Davies
,
Appl. Phys. B: Lasers Opt.
92
,
335
(
2008
).
16.
T.
Aellen
,
S.
Blaser
,
M.
Beck
,
D.
Hofstetter
,
J.
Faist
, and
E.
Gini
,
Appl. Phys. Lett.
83
,
1929
(
2003
).
17.
J.
Perrin
,
J.
Schmitt
,
C.
Hollenstein
,
A.
Howling
, and
L.
Sansonnens
,
Plasma Phys. Controlled Fusion
42
,
B353
(
2000
).
18.
C.
Hollenstein
,
Plasma Phys. Controlled Fusion
42
,
R93
(
2000
).
19.
Z.
Remes
,
M.
Vanecek
,
P.
Torres
,
U.
Kroll
,
A. H.
Mahan
, and
R. S.
Crandall
,
J. Non-Cryst. Solids
227
,
876
(
1998
).
20.
J.
Mullerova
,
P.
Sutta
,
G.
van Elzakker
,
M.
Zeman
, and
M.
Mikula
,
Appl. Surf. Sci.
254
,
3690
(
2008
).
21.
A.
Cabana
,
L.
Lambert
, and
C.
Pepin
,
J. Mol. Spectrosc.
43
,
429
(
1972
).
You do not currently have access to this content.