A bubble propulsion model based on catalyzed hydrogen peroxide decomposition and momentum change via O2 bubbles detaching from the catalytic surface is proposed to explain the autonomous motion of catalytic nanomotors. The propelling force closely depends upon the surface tension of the liquid as well as the bulk concentration of hydrogen peroxide, and the model predictions are supported by the experimental data of Pt-coated spherical silica microbead motors.

1.
M.
Schliwa
and
G.
Woehlke
,
Nature (London)
422
,
759
(
2003
).
2.
R.
Lipowsky
,
Y.
Chai
,
S.
Klumpp
,
S.
Liepelt
, and
M. J. I.
Muller
,
Physica A
372
,
34
(
2006
).
3.
S.
Fournier-Bidoz
,
A. C.
Arsenault
,
I.
Manners
, and
G. A.
Ozin
,
Chem. Commun. (Cambridge)
4
,
441
(
2005
).
4.
J. M.
Catchmark
,
S.
Subramanian
, and
A.
Sen
,
Small
1
,
202
(
2005
).
5.
J.
Vicario
,
R.
Eelkema
,
W. R.
Browne
,
A.
Meetsma
,
R. M.
La Crois
, and
B. L.
Feringa
,
Chem. Commun. (Cambridge)
31
,
3936
(
2005
).
6.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K.
St. Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
7.
P.
Dhar
,
T. M.
Fischer
,
Y.
Wang
,
T. E.
Mallouk
,
W. F.
Paxton
, and
A.
Sen
,
Nano Lett.
6
,
66
(
2006
).
8.
L.
Qin
,
M. J.
Banholzer
,
X.
Xu
,
L.
Huang
, and
C. A.
Mirkin
,
J. Am. Chem. Soc.
129
,
14870
(
2007
).
9.
R. K.
Soong
,
G. D.
Backand
,
H. P.
Neves
,
A. G.
Olkhovets
,
H. G.
Craighead
, and
C. D.
Montemango
,
Science
290
,
1555
(
2000
).
10.
G. A.
Ozin
,
I.
Manners
,
S.
Fournier-Bidoz
, and
A.
Arsenault
,
Adv. Mater. (Weinheim, Ger.)
17
,
3011
(
2005
).
11.
N.
Mano
and
A.
Heller
,
J. Am. Chem. Soc.
127
,
11574
(
2005
).
12.
Y.
Wang
,
R. M.
Hernandez
,
D. J.
Bartlett
,
J. M.
Bingham
,
T. R.
Kline
,
A.
Sen
, and
T. E.
Mallouk
,
Langmuir
22
,
10451
(
2006
).
13.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
,
Phys. Rev. Lett.
94
,
220801
(
2005
).
14.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
,
New J. Phys.
9
,
126
(
2007
).
15.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
,
Phys. Rev. Lett.
99
,
048102
(
2007
).
16.
Y. -P.
He
,
J.
Wu
, and
Y. -P.
Zhao
,
Nano Lett.
7
,
1369
(
2007
).
17.
R. F.
Ismagilov
,
A.
Schwartz
,
N.
Bowden
, and
G. M.
Whitesides
,
Angew. Chem. Int. Ed.
41
,
652
(
2002
).
18.
N. I.
Kovtyukhova
,
J. Phys. Chem. C
112
,
6049
(
2008
).
19.
Y.
Chen
and
M.
Groll
,
Int. J. Heat Mass Transfer
49
,
1115
(
2006
).
20.
J.
Happle
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1965
).
21.
The Reynolds number for a bubble sphere can be estimated as Re=ρv0D/μ, where ρ is the density of the gas and D is the bubble diameter (Ref. 20). We use ρ=1000kg/m3 for water, D=1μm (over estimation), and the viscosity of water 1.002Ns/m2. Then the velocity of the bubble would have to be roughly 100 m/s, for there to be turbulent flow. We expect that the bubble speed is far less than 100 m/s, which means we are dealing with a very small Reynolds number situation.
22.
M.
Favelukis
and
G. S.
Yablonsky
,
Ind. Eng. Chem. Res.
43
,
4476
(
2004
).
23.
I.
Tinoco
,
K.
Sauer
,
J. C.
Wang
, and
J. D.
Puglisi
,
Physical Chemistry
(
Prentice Hall
,
Upper Saddle River, NJ
,
2002
).
24.
P. G.
Bowers
,
C.
Hofstetter
,
C. R.
Letter
, and
R. T.
Toomey
,
J. Phys. Chem.
99
,
9632
(
1995
).
25.
Z. L.
Yang
,
T. N.
Dinh
,
R. R.
Nourgaliev
, and
B. R.
Sehgal
Int. J. Heat Mass Transfer
44
,
195
(
2001
).
26.
J. C.
Love
,
B. D.
Gates
,
D. B.
Wolfe
,
K. E.
Paul
, and
G. M.
Whitesides
,
Nano Lett.
2
,
891
(
2002
).
27.
J. G.
Gibbs
and
Y. -P.
Zhao
,
Rev. Sci. Instrum.
79
,
086108
(
2008
).
You do not currently have access to this content.