The “hot spots” mechanism is a common wisdom for surface enhanced Raman scattering (SERS). We argue that this is true when the hot spots are directly exposed to the detector. For complex SERS substrates with layered structures such as nanorod arrays, the structure and the layer absorbance both play important roles, which make the effect of hot spots less significant. Using a numerical calculation of the local electric field distribution of an Ag nanorod array substrate, we demonstrate that the layer absorbance must be considered in order to obtain polarization-dependent SERS intensity that is consistent with experimental data.

1.
R. M.
Jarvis
and
R.
Goodacre
,
Anal. Chem.
76
,
40
(
2004
).
[PubMed]
2.
T.
Vo-Dinh
,
TrAC, Trends Anal. Chem.
17
,
557
(
1998
);
A.
Campion
and
P.
Kambhampati
,
Chem. Soc. Rev.
27
,
241
(
1998
).
3.
D. L.
Jeanmaire
and
R. P.
van Duyne
,
J. Electroanal. Chem. Interfacial Electrochem.
84
,
1
(
1977
);
G. A.
Baker
and
D. S.
Moore
,
Anal. Bioanal. Chem.
382
,
1751
(
2005
);
[PubMed]
Z. Q.
Tian
,
B.
Ren
, and
D. Y.
Wu
,
J. Phys. Chem. B
106
,
9463
(
2002
).
4.
Y. -J.
Liu
,
Z. -Y.
Zhang
,
Q.
Zhao
, and
Y. -P.
Zhao
,
Appl. Phys. Lett.
93
,
173106
(
2008
).
5.
Y. -J.
Liu
,
Z. -Y.
Zhang
,
Q.
Zhao
,
R. A.
Dluhy
, and
Y.-P.
Zhao
,
Appl. Phys. Lett.
94
,
033103
(
2009
);
W.
Luo
,
W.
van der Veer
,
P.
Chu
,
D. L.
Mills
,
R. M.
Penner
, and
J. C.
Hemminger
,
J. Phys. Chem. C
112
,
11609
(
2008
);
S. J.
Lee
,
J. M.
Baik
, and
M.
Moskovits
,
Nano Lett.
8
,
3244
(
2008
).
[PubMed]
6.
S. -M.
Nie
and
S. R.
Emory
,
Science
275
,
1102
(
1997
);
[PubMed]
K.
Kneipp
,
Y.
Wang
,
H.
Kneipp
,
L. T.
Perelman
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
Phys. Rev. Lett.
78
,
1667
(
1997
).
7.
E.
Hao
and
G. C.
Schatz
,
J. Chem. Phys.
120
,
357
(
2004
).
8.
R. M.
Stöckle
,
Y.
Doug Suh
,
V.
Deckert
, and
R.
Zenobi
,
Chem. Phys. Lett.
318
,
131
(
2000
).
9.
S.
Chan
,
S.
Kwon
,
T. -W.
Koo
,
L. P.
Lee
, and
A. A.
Berlin
,
Adv. Mater. (Weinheim, Ger.)
15
,
1595
(
2003
);
H. H.
Lin
,
J.
Mock
,
D.
Smith
,
T.
Gao
, and
M.
Sailor
,
J. Phys. Chem. B
108
,
11654
(
2004
);
R. J.
Walsh
and
G.
Chumanov
,
Appl. Spectrosc.
55
,
1695
(
2001
).
10.
J. -G.
Fan
and
Y. -P.
Zhao
,
Langmuir
24
,
14172
(
2008
);
[PubMed]
S.
Chattopadhyay
,
H. C.
Lo
,
C. H.
Hsu
,
L. C.
Chen
, and
K. H.
Chen
,
Chem. Mater.
17
,
553
(
2005
);
M.
Suzuki
,
W.
Maekita
,
Y.
Wada
,
K.
Nakajima
,
K.
Kimura
,
T.
Fukuoka
, and
Y.
Mori
,
Appl. Phys. Lett.
88
,
203121
(
2006
).
11.
S. B.
Chaney
,
S.
Shanmukh
,
R. A.
Dluhy
, and
Y. -P.
Zhao
,
Appl. Phys. Lett.
87
,
031908
(
2005
).
12.
S.
Shanmukh
,
L.
Jones
,
J. D.
Driskell
,
Y. -P.
Zhao
,
R. A.
Dluhy
, and
R. A.
Tripp
Nano Lett.
6
,
2630
(
2006
);
[PubMed]
Y. -J.
Liu
,
J. -G.
Fan
,
Y. -P.
Zhao
,
S.
Shanmukh
, and
R. A.
Dluhy
,
Appl. Phys. Lett.
89
,
173134
(
2006
);
H. Y.
Chu
,
Y. -J.
Liu
,
Y. -W.
Huang
, and
Y. -P.
Zhao
,
Opt. Express
15
,
12230
(
2007
).
[PubMed]
13.
J. D.
Driskell
,
S.
Shanmukh
,
Y. -J.
Liu
,
S. B.
Chaney
,
X. -J.
Tang
,
Y. -P.
Zhao
, and
R. A.
Dluhy
,
J. Phys. Chem. C
112
,
895
(
2008
).
14.
Y. -P.
Zhao
,
S. B.
Chaney
,
S.
Shanmukh
, and
R. A.
Dluhy
,
J. Phys. Chem. B
110
,
3153
(
2006
).
15.
C. L.
Leverette
,
S. A.
Jacobs
,
S.
Shanmukh
,
S. B.
Chaney
,
R. A.
Dluhy
, and
Y. -P.
Zhao
,
Appl. Spectrosc.
60
,
906
(
2006
).
16.
H. -F.
Gai
,
J.
Wang
, and
Q.
Tian
,
Appl. Opt.
46
,
2229
(
2007
).
17.
S. B.
Chaney
,
Z. -Y.
Zhang
, and
Y. -P.
Zhao
,
Appl. Phys. Lett.
89
,
053117
(
2006
).
18.
Y. -P.
Zhao
,
S. B.
Chaney
, and
Z. -Y.
Zhang
,
J. Appl. Phys.
100
,
063527
(
2006
).
You do not currently have access to this content.