We demonstrate rapid homogenous micromixing at low Reynolds numbers in an easily fabricated and geometrically simple three-dimensional polystyrene vortex micromixer. Micromixing is critically important for miniaturized analysis systems. However, rapid and effective mixing at these small scales remains a persistent challenge. We compare our micromixer’s performance against a two-dimensional square-wave design by examining its effectiveness in mixing solutions of dissimilar concentration as well as suspension solutions comprised of microparticles. Numerical simulations confirm our experimental observations and provide insights on the self-rotational mixing dynamics achieved with our simple geometry at low Reynolds numbers. This rapid, robust, and easily fabricated micromixer is amenable readily to large scale integration.

1.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
,
Annu. Rev. Fluid Mech.
36
,
381
(
2004
).
2.
P.
Yager
,
T.
Edwards
,
E.
Fu
,
K.
Helton
,
K.
Nelson
,
M. R.
Tam
, and
B. H.
Weigl
,
Nature (London)
442
,
412
(
2006
).
3.
R. A.
Vijayendran
,
K. M.
Motsegood
,
D. J.
Beebe
, and
D. E.
Leckband
,
Langmuir
19
,
1824
(
2003
).
4.
B. J.
Burke
and
F. E.
Regnier
,
Anal. Chem.
75
,
1786
(
2003
).
5.
N. T.
Nguyen
and
Z.
Wu
,
J. Micromech. Microeng.
15
,
R1
(
2005
).
6.
H. M.
Xia
,
S. Y. M.
Wan
,
C.
Shu
, and
Y. T.
Chew
,
Lab Chip
5
,
748
(
2005
).
7.
J.
Aubin
,
D. F.
Fletcher
, and
C.
Xuereb
,
Chem. Eng. Technol.
26
,
1262
(
2003
).
8.
J. M.
Ottino
and
S.
Wiggins
,
Science
305
,
485
(
2004
).
9.
C. J.
Campbell
and
B. A.
Grzybowski
,
Philos. Trans. R. Soc. London, Ser. A
362
,
1069
(
2004
).
10.
H.
Oddy
,
J. G.
Santiago
, and
J. C.
Mikkelsen
,
Anal. Chem.
73
,
5822
(
2001
).
11.
A. P.
Sudarsan
and
V. M.
Ugaz
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
7228
(
2006
).
12.
A. N.
Hellman
,
K. R.
Rau
,
H. H.
Yoon
,
S.
Bae
,
J. F.
Palmer
,
K. S.
Phillips
,
N. L.
Allbritton
, and
V.
Venugopalan
,
Anal. Chem.
79
,
4484
(
2007
).
13.
X.
Niu
,
L.
Liu
,
W.
Wen
, and
P.
Sheng
,
Appl. Phys. Lett.
88
,
153508
(
2006
).
14.
K. S.
Ryu
,
K.
Shaikh
,
E.
Goluch
,
Z.
Fan
, and
C.
Liu
,
Lab Chip
4
,
608
(
2004
).
15.
R. H.
Liu
,
J.
Yang
,
M. Z.
Pindera
,
M.
Athavale
, and
P.
Grodzinski
,
Lab Chip
2
,
151
(
2002
).
16.
R. H.
Liu
,
M. A.
Stremler
,
K. V.
Sharp
,
M. G.
Olson
,
J. G.
Santiago
,
R. J.
Adrian
,
H.
Aref
, and
D. J.
Beebe
,
J. Microelectromech. Syst.
9
,
190
(
2000
).
17.
M. A.
Stremler
,
F. R.
Haselton
, and
H.
Aref
,
Philos. Trans. R. Soc. London, Ser. A
362
,
1019
(
2004
).
18.
A. D.
Stroock
,
S. K. W.
Dertinger
,
A.
Ajdari
,
I.
Mezic
,
H. A.
Stone
, and
G. M.
Whitesides
,
Science
295
,
647
(
2002
).
19.
C. H.
Lin
,
C. H.
Tsai
, and
L. M.
Fu
,
J. Micromech. Microeng.
15
,
935
(
2005
).
20.
C. S.
Chen
,
D. N.
Breslauer
,
J. I.
Luna
,
A.
Grimes
,
W. C.
Chin
,
L. P.
Lee
, and
M.
Khine
,
Lab Chip
8
,
622
(
2008
).
21.
A.
Grimes
,
D. N.
Breslauer
,
M.
Long
,
J.
Pegan
,
L. P.
Lee
, and
M.
Khine
,
Lab Chip
8
,
170
(
2008
).
22.
P. F.
Fischer
,
J. Comput. Phys.
133
,
84
(
1997
).
You do not currently have access to this content.