Pentacene-based low-voltage organic transistors were realized with titanium oxide/polystyrene (TiO2/PS) bilayer dielectrics. Significantly, the TiO2 bottom layer was fabricated by a layer-by-layer deposition procedure and had an ultrathin thickness (<5nm). The nonpolar PS top layer not only shields out the high polarity TiO2 layer, but also reduces the roughness of the dielectric, which results in low gate leakage of dielectric and the more ordered growth of pentacene film. This organic transistor with a TiO2/PS bilayer dielectric was found to exhibit high performance with a low operating voltage (3V), and a high on/off ratio (>107).

1.
S.
Kobayashi
,
T.
Nishikawa
,
T.
Takenobu
,
S.
Mori
,
T.
Shimoda
,
T.
Mitani
,
H.
Smimotani
,
N.
Yoshimoto
,
S.
Ogawa
, and
Y.
Iwasa
,
Nature Mater.
3
,
317
(
2004
).
2.
D. H.
Kim
,
H. S.
Lee
,
H.
Yang
,
L.
Yang
, and
K.
Cho
,
Adv. Funct. Mater.
18
,
1363
(
2008
).
3.
S.
Lee
,
B.
Koo
,
J.
Shin
,
E.
Lee
,
H.
Park
, and
H.
Kim
,
Appl. Phys. Lett.
88
,
162109
(
2006
).
4.
H. E. A.
Huitema
,
G. H.
Gelinck
,
J. B. P. H.
van der Putten
,
K. E.
Kuijk
,
C. M.
Hart
,
E.
Cantatore
,
P. T.
Herwig
,
A. J. J. M.
van Breemen
, and
D. M.
de Leeuw
,
Nature (London)
414
,
599
(
2001
).
5.
J. A.
Rogers
,
Z.
Bao
,
K.
Baldwin
,
A.
Dodabalapur
,
B.
Crone
,
V. R.
Raju
,
V.
Kuck
,
H.
Katz
,
K.
Amundson
,
J.
Ewing
, and
P.
Drzaic
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
4835
(
2001
).
6.
T.
Someya
,
T.
Sekitani
,
S.
Iba
,
Y.
Kato
,
H.
Kawaguchi
, and
T.
Sakurai
,
Proc. Natl. Acad. Sci. U.S.A.
101
,
9966
(
2004
).
7.
P. F.
Baude
,
D. A.
Ender
,
M. A.
Haase
,
T. W.
Kelley
,
D. V.
Muyres
, and
S. D.
Theiss
,
Appl. Phys. Lett.
82
,
3964
(
2003
).
8.
A. L.
Briseno
,
S. C. B.
Mannsfeld
,
C.
Reese
,
J. M.
Hancock
,
Y.
Xiong
,
S. A.
Jenekhe
,
Z.
Bao
, and
Y.
Xia
,
Nano Lett.
7
,
2847
(
2007
).
9.
M. E.
Roberts
,
S. C. B.
Mannsfeld
,
N.
Queraltó
,
C.
Reese
,
J.
Locklin
,
W.
Knoll
, and
Z.
Bao
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
12134
(
2008
).
10.
H.
Klauk
,
U.
Zschieschang
,
J.
Pflaum
, and
M.
Halik
,
Nature (London)
445
,
745
(
2007
).
11.
M.
Halik
,
H.
Klauk
,
U.
Zschieschang
,
G.
Schmid
,
C.
Dehm
,
M.
Schütz
,
S.
Maisch
,
F.
Effenberger
,
M.
Brunnbauer
, and
F.
Stellacci
,
Nature (London)
431
,
963
(
2004
).
12.
L. A.
Majewski
,
R.
Schroeder
, and
M.
Grell
,
Adv. Funct. Mater.
15
,
1017
(
2005
).
13.
M. -H.
Yoon
,
H.
Yan
,
A.
Facchetti
, and
T. J.
Marks
,
J. Am. Chem. Soc.
127
,
10388
(
2005
).
14.
S.
Ono
,
S.
Seki
,
R.
Hirahara
,
Y.
Tominari
, and
J.
Takeya
,
Appl. Phys. Lett.
92
,
103313
(
2008
).
15.
J.
Lee
,
M. J.
Panzer
,
Y.
He
,
T. P.
Lodge
, and
C. D.
Frisbie
,
J. Am. Chem. Soc.
129
,
4532
(
2007
).
16.
C. D.
Dimitrakopoulos
,
S.
Purushothaman
,
J.
Kymissis
,
A.
Callegari
, and
J. M.
Shaw
,
Science
283
,
822
(
1999
).
17.
Y. D.
Park
,
D. H.
Kim
,
Y.
Jang
,
M.
Hwang
,
J. A.
Lim
, and
K.
Cho
,
Appl. Phys. Lett.
87
,
243509
(
2005
).
18.
Y.
Jang
,
D. H.
Kim
,
Y. D.
Park
,
J. H.
Cho
,
M.
Hwang
, and
K.
Cho
,
Appl. Phys. Lett.
88
,
072101
(
2006
).
19.
W.
Wang
,
G.
Dong
,
L.
Wang
, and
Y.
Qiu
,
Microelectron. Eng.
85
,
414
(
2008
).
20.
M.
Kitamura
and
Y.
Arakawa
,
Appl. Phys. Lett.
89
,
223525
(
2006
).
21.
G.
Wang
,
D.
Moses
,
A. J.
Heeger
,
H. -M.
Zhang
,
M.
Narasimhan
, and
R. E.
Demaray
,
J. Appl. Phys.
95
,
316
(
2004
).
22.
O.
Acton
,
G.
Ting
,
H.
Ma
,
J. W.
Ka
,
H. -L.
Yip
,
N. M.
Tucker
, and
A. K.-Y.
Jen
,
Adv. Mater. (Weinheim, Ger.)
20
,
3697
(
2008
).
23.
C.
Jung
,
A.
Maliakal
,
A.
Sidorenko
, and
T.
Siegrist
,
Appl. Phys. Lett.
90
,
062111
(
2007
).
24.
L. A.
Majewski
,
R.
Schroeder
, and
M.
Grell
,
Adv. Mater. (Weinheim, Ger.)
17
,
192
(
2005
).
25.
J.
Veres
,
S. D.
Ogier
,
S. W.
Leeming
,
D. C.
Cupertino
, and
S. M.
Khaffaf
,
Adv. Funct. Mater.
13
,
199
(
2003
).
26.
Y.
Aoki
and
T.
Kunitake
,
Adv. Mater. (Weinheim, Ger.)
16
,
118
(
2004
).
27.
A.
Facchetti
,
M. -H.
Yoon
, and
T. J.
Marks
,
Adv. Mater. (Weinheim, Ger.)
17
,
1705
(
2005
).
You do not currently have access to this content.