Ultrafast dephasing of the plasmonlike longitudinal optical phonon-plasmon coupled (LOPC) mode in highly doped n-GaAs has been investigated by using a femtosecond optical pump-probe technique with 40 THz bandwidth as a function of photodoping levels. The direct measurement of plasmon damping with the help of a wavelet analysis enables us to extract carrier (electron) mobility, which decreases with increasing the photodoping levels. It is found that the mobility is suppressed at high photodoping levels due to electron-hole scattering, while it is enhanced near a critical density, being plausibly attributed to the strong coherent coupling of the LO phonon with the plasmon.

1.
P. Y.
Yu
and
M.
Cardona
,
Fundamentals of Semiconductors
(
Springer
,
Berlin, Heidelberg
,
1999
), Chap. 3.
2.
M. C.
Beard
,
G. M.
Turner
, and
C. A.
Schmuttenmaer
,
Phys. Rev. B
62
,
15764
(
2000
).
3.
A.
Mooradian
and
A. L.
McWhorter
,
Phys. Rev. Lett.
19
,
849
(
1967
).
4.
S.
Nakashima
and
H.
Harima
,
Phys. Status Solidi A
162
,
39
(
1997
).
5.
M.
Chafai
,
A.
Jaouhari
,
A.
Torres
,
R.
Antón
,
E.
Martín
,
J.
Jiménez
, and
W. C.
Mitchel
,
J. Appl. Phys.
90
,
5211
(
2001
).
6.
R.
Huber
,
C.
Kübler
,
S.
Tübel
,
A.
Leitenstorfer
,
Q. T.
Vu
,
H.
Hang
,
F.
Köhler
, and
M. -C.
Amann
,
Phys. Rev. Lett.
94
,
027401
(
2005
).
7.
T.
Dekorsy
,
G. C.
Cho
, and
H.
Kurz
, in
Light Scattering in Solids VIII
, edited by
M.
Cardona
and
G.
Güntherodt
(
Springer
,
Berlin, Heidelberg
,
2000
), Chap. 4.
8.
F.
Ganikhanov
,
K. C.
Burr
, and
C. L.
Tang
,
Appl. Phys. Lett.
73
,
64
(
1998
).
9.
G. C.
Cho
,
T.
Dekorsy
,
H. J.
Bakker
,
R.
Hövel
, and
H.
Kurz
,
Phys. Rev. Lett.
77
,
4062
(
1996
).
10.
M.
Hase
,
S.
Nakashima
,
K.
Mizoguchi
,
H.
Harima
, and
K.
Sakai
,
Phys. Rev. B
60
,
16526
(
1999
).
11.
The main difference between the previous experiment (Ref. 10) and the present experiment is the bandwidth of the detection (<30THz in the previous one), which enabled us to observe plasmonlike LOPC modes at the higher total carrier density than those in the previous study.
12.
M.
Hase
,
M.
Kitajima
,
A. M.
Constantinescu
, and
H.
Petek
,
Nature (London)
426
,
51
(
2003
).
13.
S.
Nakashima
,
K.
Mizoguchi
,
H.
Harima
, and
K.
Sakai
,
J. Lumin.
76–77
,
6
(
1998
).
14.
Y. -M.
Chang
,
H. W.
Chu
,
C. -H.
Shen
,
H. -Y.
Chen
, and
S.
Gwo
,
Appl. Phys. Lett.
90
,
072111
(
2007
).
15.
F.
Vallée
,
F.
Ganikhanov
, and
F.
Bogani
,
Phys. Rev. B
56
,
13141
(
1997
).
16.
D. M.
Caughey
and
R. E.
Thomas
,
Proc. IEEE
55
,
2192
(
1967
).
17.
The data in Fig. 3(b) was fit to also the power law of μNtot1 and μNtot1/3, according to the Drude model and the Coulomb screening model, respectively (Ref. 14). The former model reproduced the reduction in μ at Ntot<1.4×1018cm3 well, while the latter one explained the behavior of μ at Ntot>1.4×1018cm3.
18.
H. P. M.
Pellemans
and
P. C. M.
Planken
,
Phys. Rev. B
57
,
R4222
(
1998
).
19.
J. D.
Lee
and
M.
Hase
(unpublished).
20.
J. R.
Meyer
and
F. J.
Bartoli
,
Phys. Rev. B
28
,
915
(
1983
).
21.
J. D.
Lee
and
M.
Hase
,
Phys. Rev. Lett.
101
,
235501
(
2008
).
You do not currently have access to this content.