Large-area, wafer-scale silicon nanowire arrays prepared by metal-induced chemical etching are shown as promising scalable anode materials for rechargeable lithium battery. In addition to being low cost, large area, and easy to prepare, the electroless-etched silicon nanowires (SiNWs) have good conductivity and nanometer-scale rough surfaces; both features facilitate charge transport and insertion/extraction of Li ions. The electroless-etched SiNWs anode showed larger charge capacity and longer cycling stability than the conventional planar-polished Si wafer.

1.
Lithium Batteries: Science and Technology
, edited by
G. A.
Nazri
and
G.
Pistoia
(
Kluwer
,
Boston
,
2004
).
2.
M.
Winter
,
J. O.
Besenhard
,
M. E.
Spahr
, and
P.
Novak
,
Adv. Mater. (Weinheim, Ger.)
10
,
725
(
1998
).
3.
J. O.
Besenhard
,
J.
Yang
, and
M.
Winter
,
J. Power Sources
68
,
87
(
1997
).
4.
B. A.
Boukamp
,
G. C.
Lesh
, and
R. A.
Huggins
,
J. Electrochem. Soc.
128
,
725
(
1981
).
5.
P.
Poizot
,
S.
Laruelle
,
S.
Grugeon
,
L.
Dupont
, and
J. M.
Tarascon
,
Nature (London)
407
,
496
(
2000
).
6.
A.
Anani
and
R. A.
Huggins
,
J. Power Sources
38
,
351
(
1992
).
7.
H.
Ma
,
F.
Cheng
,
J.
Chen
,
J.
Zhao
,
C.
Li
,
Z.
Tao
, and
J.
Liang
,
Adv. Mater. (Weinheim, Ger.)
19
,
4067
(
2007
).
8.
U.
Kasavajjula
,
C.
Wang
, and
A. J.
Appleby
,
J. Power Sources
163
,
1003
(
2007
).
9.
M.
Green
,
E.
Fielder
,
B.
Scrosati
,
M.
Wachtler
, and
J. S.
Moreno
,
Electrochem. Solid-State Lett.
6
,
A75
(
2004
).
10.
M.
Holzapfel
,
H.
Buqa
,
L. J.
Hardwick
,
M.
Hahn
,
A.
Wursig
,
W.
Scheifele
,
P.
Novak
,
R.
Kotz
,
C.
Veit
, and
F. M.
Petrat
,
Electrochim. Acta
52
,
973
(
2006
).
11.
S. H.
Ng
,
J. Z.
Wang
,
D.
Wexler
,
K.
Konstantinov
,
Z. P.
Guo
, and
H. K.
Liu
,
Angew. Chem., Int. Ed.
45
,
6896
(
2006
).
12.
X. L.
Yang
,
Z. Y.
Wen
,
X. X.
Xu
,
B.
Lin
, and
S. H.
Huang
,
J. Power Sources
164
,
880
(
2007
).
13.
H. C.
Shin
,
J. A.
Corno
,
J. L.
Gole
, and
M. L.
Liu
,
J. Power Sources
139
,
314
(
2005
).
14.
Y.
Wu
and
P.
Yang
,
J. Am. Chem. Soc.
123
,
3165
(
2001
).
15.
J. D.
Holmes
,
K. P.
Johnston
,
R. C.
Doty
, and
B. A.
Korgel
,
Science
287
,
1471
(
2000
).
16.
S. T.
Lee
,
N.
Wang
,
Y. F.
Zhang
, and
Y. H.
Tang
,
MRS Bull.
24
,
36
(
1999
).
17.
K. Q.
Peng
,
Y. J.
Yan
,
S. P.
Gao
, and
J.
Zhu
,
Adv. Mater. (Weinheim, Ger.)
14
,
1164
(
2002
).
18.
K. Q.
Peng
,
Y.
Wu
,
H.
Fang
,
X. Y.
Zhong
,
Y.
Xu
, and
J.
Zhu
,
Angew. Chem., Int. Ed.
44
,
2737
(
2005
).
19.
K. Q.
Peng
,
J. J.
Hu
,
Y. J.
Yan
,
Y.
Wu
,
H.
Fang
,
Y.
Xu
,
S. T.
Lee
, and
J.
Zhu
,
Adv. Funct. Mater.
16
,
387
(
2006
).
20.
K. Q.
Peng
,
M. L.
Zhang
,
A. J.
Lu
,
N. B.
Wong
,
R. Q.
Zhang
, and
S. T.
Lee
,
Appl. Phys. Lett.
90
,
163123
(
2007
).
21.
C. K.
Chan
,
H.
Peng
,
G.
Liu
,
K.
McIlwrath
,
X. F.
Zhang
,
R. A.
Huggins
, and
Y.
Cui
,
Nat. Nanotechnol.
3
,
31
(
2008
).
22.
J. S.
Jie
,
W. J.
Zhang
,
K. Q.
Peng
,
G. D.
Yuan
,
C. S.
Lee
, and
S. T.
Lee
(to be published).
You do not currently have access to this content.