Using concepts developed in the fields of compressive sensing and random-projection-based embeddings, we consider classification of an object situated within a complex propagation environment. We demonstrate that propagation through such an environment may be exploited to enhance classification performance, analogous to the enhanced resolution in time-reversal techniques. The theory is demonstrated using rf measurements.
REFERENCES
1.
2.
L.
Carin
, D.
Liu
, and B.
Guo
, Inverse Probl.
24
, 015023
(2008
).3.
D.
Liu
, S.
Vasudevan
, J.
Krolik
, G.
Bal
, and L.
Carin
, IEEE Trans. Antennas Propag.
55
, 344
(2007
).4.
P.
Blomberg
, G.
Papanicolaou
, and H. K.
Zhao
, J. Acoust. Soc. Am.
111
, 230
(2002
).5.
6.
E. J.
Candès
, J.
Romberg
, and T.
Tao
, Commun. Pure Appl. Math.
59
, 1207
(2006
).7.
E. J.
Candès
and T.
Tao
, IEEE Trans. Inf. Theory
51
, 4203
(2005
).8.
E. J.
Candès
and T.
Tao
, IEEE Trans. Inf. Theory
52
, 5406
(2006
).9.
E. J.
Candès
and M. B.
Wakin
, IEEE Signal Process. Mag.
25
, 21
(2008
).10.
11.
D.
Achlioptas
, Proceedings of the ACM Symposium on Principles of Database Systems
, 2001
(unpublished), pp. 274
–281
.12.
M.
Davenport
, M.
Duarte
, M.
Wakin
, J.
Laska
, D.
Takhar
, K.
Kelly
, and R.
Baraniuk
, Proceedings of Computational Imaging V at SPIE Electronic Imaging
, 2007
(unpublished).13.
14.
© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.