We investigate the electronic properties of graphene upon water adsorption and study the influence of the SiO2 substrate in this context using density functional calculations. Perfect suspended graphene is rather insensitive to H2O adsorbates, as doping requires highly oriented H2O clusters. For graphene on a defective SiO2 substrate, we find a strongly different behavior: H2O adsorbates can shift the substrate’s impurity bands and change their hybridization with the graphene bands. In this way, H2O can lead to doping of graphene for much lower adsorbate concentrations than for free hanged graphene. The effect depends strongly on the microscopic substrate properties.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
2.
K. S.
Novoselov
,
D.
Jiang
,
F.
Schedin
,
T. J.
Booth
,
V. V.
Khotkevich
,
S. V.
Morozov
, and
A. K.
Geim
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
10451
(
2005
).
3.
S. V.
Morozov
,
K. S.
Novoselov
,
M. I.
Katsnelson
,
F.
Schedin
,
D. C.
Elias
,
J. A.
Jaszczak
, and
A. K.
Geim
,
Phys. Rev. Lett.
100
,
016602
(
2008
).
4.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
E. W.
Hill
,
P.
Blake
,
M. I.
Katsnelson
, and
K. S.
Novoselov
,
Nature Mater.
6
,
652
(
2007
).
5.
T. O.
Wehling
,
K. S.
Novoselov
,
S. V.
Morozov
,
E. E.
Vdovin
,
M. I.
Katsnelson
,
A. K.
Geim
, and
A. I.
Lichtenstein
,
Nano Lett.
8
,
173
(
2008
).
6.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
,
Phys. Rev. B
77
,
125416
(
2008
).
7.
J.
Zhao
,
A.
Buldum
,
J.
Han
, and
J. P.
Lu
,
Nanotechnology
13
,
195
(
2002
).
8.
J.
Sabio
,
C.
Seoánez
,
S.
Fratini
,
F.
Guinea
,
A. H. C.
Neto
, and
F.
Sols
,
Phys. Rev. B
77
,
195409
(
2008
).
9.
T. J.
Echtermeyer
,
M. C.
Lemme
,
M.
Baus
,
B. N.
Szafranek
,
A. K.
Geim
, and
H.
Kurz
, “
A graphene-based electrochemical switch
,” arXiv:0712.2026v1.
10.
J. P.
Robinson
,
H.
Schomerus
,
L.
Oroszlany
, and
V. I.
Fal’ko
,
Phys. Rev. Lett.
101
,
196803
(
2008
).
11.
J.
Moser
,
A.
Verdaguer
,
D.
Jimenez
,
A.
Barreiro
, and
A.
Bachtold
,
Appl. Phys. Lett.
92
,
123507
(
2008
).
12.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
13.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
14.
G.
Kresse
and
J.
Hafner
,
J. Phys.: Condens. Matter
6
,
8245
(
1994
).
15.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
16.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
17.
R. M.
Ribeiro
,
N. M. R.
Peres
,
J.
Coutinho
, and
P. R.
Briddon
,
Phys. Rev. B
78
,
075442
(
2008
).
18.
At 3Å or higher above the graphene sheet the potential energy landscape is very flat. The H2O adsorption energies change by less than 5 meV with lateral position (Ref. 6).
19.
Starting from overlayers according to the “Bernal–Fowler–Pauling” rules (see Refs. 20 and 27) our relaxations yield the first H2O layer at 3.8 and 4.0Å above the graphene sheet for adsorbed bi- and tetralayers, respectively, with oxygen closest to graphene.
20.
T.
Lankau
, Habilitaion Thesis, University of Hamburg,
2004
.
21.
S.
Meng
,
E.
Kaxiras
, and
Z.
Zhang
,
J. Chem. Phys.
127
,
244710
(
2007
).
22.
P.
Carrier
,
L. J.
Lewis
, and
M. W. C.
Dharma-wardana
,
Phys. Rev. B
64
,
195330
(
2001
).
23.
M.
Wilson
and
T. R.
Walsh
,
J. Chem. Phys.
113
,
9180
(
2000
).
24.
A.
Wright
and
A.
Leadbetter
,
Philos. Mag.
31
,
1391
(
1975
).
25.
W.
Kim
,
A.
Javey
,
O.
Vermesh
,
Q.
Wang
,
Y.
Li
, and
H.
Dai
,
Nano Lett.
3
,
193
(
2003
).
26.
X.
Du
,
I.
Skachko
,
A.
Barker
, and
E. Y.
Andrei
,
Nat. Nanotechnol.
3
,
491
(
2008
).
27.
P. A.
Thiel
and
T. E.
Madey
,
Surf. Sci. Rep.
7
,
211
(
1987
).
You do not currently have access to this content.