Amyloid nanowires were incorporated in organic photovoltaic devices in order to enhance the transport properties. Amyloid fibrils act as a template for donor-acceptor materials. The current-voltage characteristics under illumination and in the dark display a maximum for the fill factor and the space charge limit current, respectively, at an amyloid nanowire-donor-acceptor mass ratio of 0.014:1:1, associated to a better charge transport in the donor-acceptor domains. The absorption experiments display a redshift associated to a more planar polymer backbone with increasing concentration of amyloid fibrils. Amyloid nanowires present a significant effect on the donor-acceptor materials organization.

1.
M.
Reyes-Reyes
,
K.
Kim
,
J.
Dewald
,
R.
Lopez-Sandoval
,
A.
Avadhanula
,
S.
Curran
, and
D. L.
Caroll
,
Org. Lett.
7
,
5749
(
2005
).
2.
G.
Li
,
V.
Shrotriya
,
J.
Huang
,
Y.
Yao
,
T.
Moriarity
,
K.
Emery
, and
Y.
Yang
,
Nat. Mater.
4
,
864
(
2005
).
3.
J.
Peet
,
J. Y.
Kim
,
N. E.
Coates
,
W. L.
Ma
,
D.
Moses
,
A. J.
Heeger
, and
G. C.
Bazan
,
Nat. Mater.
6
,
497
(
2007
).
4.
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T.-Q.
Nguyen
,
M.
Dante
, and
A. J.
Heeger
,
Science
317
,
222
(
2007
).
5.
A.
Du Pasquier
,
D. D. T.
Mastrogiovanni
,
L. A.
Klein
,
T.
Wang
, and
E.
Garfunkel
,
Appl. Phys. Lett.
91
,
183501
(
2007
).
6.
P.
Ravirajan
,
A. M.
Peiro
,
M. K.
Nazeeruddin
,
M.
Graetzel
,
D. D. C.
Bradley
,
J. R.
Durrant
, and
J.
Nelson
,
J. Phys. Chem. B
110
,
7635
(
2006
).
7.
D. C.
Olson
,
J.
Piris
,
R. T.
Collins
,
S. E.
Shaheen
, and
D. S.
Ginley
,
Thin Solid Films
496
,
26
(
2005
).
8.
W. U.
Huynh
,
J. J.
Dittmer
,
N.
Teclemariam
,
D. J.
Milliron
,
A. P.
Alivisatos
, and
K. W. J.
Barnham
,
Phys. Rev. B
67
,
115326
(
2003
).
9.
P. R.
Somani
,
S. P.
Somani
, and
M.
Umeno
,
Appl. Phys. Lett.
91
,
173503
(
2007
).
10.
S.
Berson
,
R.
De Bettignies
,
S.
Bailly
, and
S.
Guillerez
,
Adv. Funct. Mater.
17
,
1377
(
2007
).
11.
I.
Cherny
and
E.
Gazit
,
Angew. Chem., Int. Ed.
47
,
2
(
2008
).
12.
T.
Scheibel
,
R.
Parthasarathy
,
G.
Sawicki
,
X.-M.
Lin
,
H.
Jaeger
, and
S. L.
Lindquist
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
4527
(
2003
).
13.
A.
Herland
,
D.
Thomsson
,
O.
Mirzov
,
I. G.
Scheblykin
, and
O.
Inganäs
,
J. Mater. Chem.
18
,
126
(
2008
).
14.
S.
Admassie
,
O.
Inganäs
,
W.
Mammo
,
E.
Perzon
, and
M. R.
Andersson
,
Synth. Met.
156
,
614
(
2006
).
15.
S. E.
Shaheen
,
C. J.
Brabec
,
N. S.
Sariciftci
,
F.
Padinger
,
T.
Fromherz
, and
J. C.
Hummelen
,
Appl. Phys. Lett.
78
,
841
(
2001
).
16.
H.
Hoppe
,
M.
Niggemann
,
C.
Winder
,
J.
Kraut
,
R.
Hiesgen
,
A.
Hinsch
,
D.
Meissner
, and
N. S.
Sariciftci
,
Adv. Funct. Mater.
14
,
1005
(
2004
).
17.
F.
Zhang
,
K. G.
Jespersen
,
C.
Björström
,
M.
Svensson
,
M. R.
Andersson
,
V.
Sundström
,
K.
Magnusson
,
E.
Moons
,
A.
Yartsev
, and
O.
Inganäs
,
Adv. Funct. Mater.
16
,
667
(
2006
).
You do not currently have access to this content.