Time-resolved photoluminescence (PL) measurements of high-quality self-assembled small In0.5Ga0.5As/GaAs quantum dots (QDs) show that the PL decay time of the QD ground state transition is nearly constant when the temperature is below 80 K and increases monotonously from 1.0 to 5.5 ns when the temperature increases from 80 to 300 K. The increased radiative lifetime of the QD ground state at higher temperatures is attributed to the thermal population of the subwetting-layer continuum states and could be one of the fundamental reasons for the low modal gain of the QD ground state transition in single-layer self-assembled QD lasers.

1.
D.
Bimberg
,
M.
Grundmann
, and
N. N.
Ledentsov
,
Quantum Dot Heterostructures
(
Wiley
,
New York
,
1998
).
2.
L. V.
Asryan
,
M.
Grundmann
,
N. N.
Ledentsov
,
O.
Stier
,
R. A.
Suris
, and
D.
Bimberg
,
J. Appl. Phys.
90
,
1666
(
2001
).
3.
M. V.
Maximov
,
Yu. M.
Shernyakov
,
A. F.
Tsatsul’nikov
,
A. V.
Lunev
,
A. V.
Sakharov
,
V. M.
Ustinov
,
A. Yu.
Egorov
,
A. E.
Zhukov
,
A. R.
Kovsh
,
P. S.
Kop’ev
,
L. V.
Asryan
,
Zh. I.
Alferov
,
N. N.
Ledentsov
,
D.
Bimberg
,
A. O.
Kosogov
, and
P.
Werner
,
J. Appl. Phys.
83
,
5561
(
1998
).
4.
Z. C.
Xu
,
D.
Birkedal
,
M.
Juhl
, and
J. M.
Hvam
,
Appl. Phys. Lett.
85
,
3259
(
2004
).
5.
Z. C.
Xu
,
Y. T.
Zhang
,
A.
Tackeuchi
,
Y.
Horikoshi
, and
J. M.
Hvam
,
Appl. Phys. Lett.
92
,
063103
(
2008
).
6.
D.
Citrin
,
Superlattices Microstruct.
13
,
303
(
1993
).
7.
H.
Gotoh
,
H.
Ando
, and
T.
Kakagahara
,
J. Appl. Phys.
81
,
1785
(
1997
).
8.
G.
Pistone
,
S.
Savasta
,
O.
Di Stefano
,
R.
Girlanda
, and
S.
Portolan
,
Phys. Status Solidi B
245
,
1067
(
2008
).
9.
G.
Wang
,
S.
Fafard
,
D.
Leonard
,
J. E.
Bowers
,
J. L.
Merz
, and
P. M.
Petroff
,
Appl. Phys. Lett.
64
,
2815
(
1994
).
10.
H. P.
Yu
,
S.
Lycett
,
C.
Roberts
, and
R.
Murray
,
Appl. Phys. Lett.
69
,
4087
(
1996
).
11.
M.
Gurioli
,
A.
Vinattieri
,
M.
Zamfirescu
, and
M.
Colocci
,
Phys. Rev. B
73
,
085302
(
2006
), and the references therein.
12.
S.
Marcinkevičius
and
R.
Leon
,
Phys. Rev. B
59
,
4630
(
1999
).
13.
Z. C.
Xu
,
Y. T.
Zhang
, and
J. M.
Hvam
,
Nanotechnology
18
,
325401
(
2007
).
14.
Z. C.
Xu
,
K.
Leosson
,
D.
Birkedal
,
J. M.
Hvam
,
J.
Sadowski
,
Z. Y.
Zhao
,
X. S.
Chen
,
Y. M.
Liu
, and
K. T.
Yang
,
J. Cryst. Growth
251
,
177
(
2003
).
15.
H.
Lee
,
W. D.
Yang
, and
P. C.
Sercel
,
Phys. Rev. B
55
,
9757
(
1997
).
16.
Y.
Toda
,
O.
Moriwaki
,
M.
Nishioka
, and
Y.
Arakawa
,
Phys. Rev. Lett.
82
,
4114
(
1999
).
17.
A.
Vasanelli
,
R.
Ferreira
, and
G.
Bastard
,
Phys. Rev. Lett.
89
,
216804
(
2002
).
18.
E. W.
Bogaart
,
J. E. M.
Haverkort
,
T.
Mano
,
T.
van Lippen
,
R.
Nötzel
, and
J. H.
Wolter
,
Phys. Rev. B
72
,
195301
(
2005
).
19.
Yu. I.
Mazur
,
B. L.
Liang
,
Zh. M.
Wang
,
D.
Guzun
,
G. J.
Salamo
,
G. G.
Tarasov
, and
Z. Ya.
Zhuchenko
,
J. Appl. Phys.
100
,
054316
(
2006
).
20.
G.
Rainò
,
G.
Visimberga
,
A.
Salhi
,
M.
De Vittorio
,
A.
Passaseo
,
R.
Cingolani
, and
M.
De Giorgi
,
Appl. Phys. Lett.
90
,
111907
(
2007
).
21.
A.
Fiore
,
P.
Borri
,
W.
Langbein
,
J. M.
Hvam
,
U.
Oesterle
,
R.
Houdré
,
R. P.
Stanley
, and
M.
Ilegems
,
Appl. Phys. Lett.
76
,
3430
(
2000
).
22.
M.
Paillard
,
X.
Marie
,
E.
Vanelle
,
T.
Amand
,
V. K.
Kalevich
,
A. R.
Kovsh
,
A. E.
Zhukov
, and
V. M.
Ustinov
,
Appl. Phys. Lett.
76
,
76
(
2000
).
23.
L. M.
Kong
,
Z. C.
Feng
,
Z. Y.
Wu
, and
W. J.
Lu
,
Semicond. Sci. Technol.
23
,
075044
(
2008
).
You do not currently have access to this content.