Negative differential resistance devices, based on two similar AlAs/GaAs superlattice structures, were fabricated using a standard selective etching and integral heat sink technology and evaluated in a resonant-cap full-height WR-15 waveguide cavity. Devices from both superlattice structures generated comparable output powers in the fundamental mode at 59–71 GHz. The best devices yielded >80mW (with corresponding dc-to-RF conversion efficiencies of >4.5%) around 63 GHz. In a second-harmonic mode, these devices yielded up to 14 mW (1%) at 133 GHz. Higher harmonic frequencies were also observed with powers of >0.4mW at 190 GHz and >0.1mW at 260 GHz. The highest observed dc-to-RF conversion efficiency was 5.1% at 62.8 GHz.

1.
L.
Esaki
and
R.
Tsu
,
IBM J. Res. Dev.
14
,
61
(
1970
).
2.
H.
Le Person
,
C.
Minot
,
L.
Boni
,
J. F.
Palmier
, and
F.
Mollot
,
Appl. Phys. Lett.
60
,
2397
(
1992
).
3.
E.
Schomburg
,
M.
Henini
,
J. M.
Chamberlain
,
P.
Steenson
,
S.
Brandl
,
K.
Hofbeck
,
K. F.
Renk
, and
W.
Wegscheider
,
Appl. Phys. Lett.
74
,
2179
(
1999
).
4.
R.
Scheuerer
,
E.
Schomburg
,
K. F.
Renk
,
A.
Wacker
, and
E.
Schöll
,
Appl. Phys. Lett.
81
,
1515
(
2002
).
5.
M.
Haeussler
,
E.
Schomburg
,
J. -M.
Batke
,
F.
Klappenberger
,
A.
Weber
,
H.
Appel
,
K. F.
Renk
,
H.
Hummel
,
B.
Ströbl
,
D. G.
Pavel’ev
, and
Yu.
Koschurinov
,
Electron. Lett.
39
,
784
(
2003
).
6.
E.
Schomburg
,
J.
Grenzer
,
K.
Hofbeck
,
T.
Blomeier
,
S.
Winnerl
,
S.
Brandl
,
A. A.
Ignatov
,
K. F.
Renk
,
D. G.
Pavel’ev
,
Yu.
Koschurinov
,
V.
Ustinov
,
A.
Zhukov
,
A.
Kovsch
,
S.
Ivanov
, and
P. S.
Kop’ev
,
Solid-State Electron.
42
,
1495
(
1998
).
7.
E.
Schomburg
,
R.
Scheuerer
,
S.
Brandl
,
K. F.
Renk
,
D. G.
Pavel’ev
,
Yu.
Koschurinov
,
V.
Ustinov
,
A.
Zhukov
,
A.
Kovsh
, and
P. S.
Kop’ev
,
Electron. Lett.
35
,
1491
(
1999
).
8.
E.
Schomburg
,
S.
Brandl
,
K.
Hofbeck
,
T.
Blomeier
,
J.
Grenzer
,
A. A.
Ignatov
,
K. F.
Renk
,
D. G.
Pavel’ev
,
Yu.
Koschurinov
,
V.
Ustinov
,
A.
Zhukov
,
A.
Kovsch
,
S.
Ivanov
, and
P. S.
Kop’ev
,
Appl. Phys. Lett.
72
,
1498
(
1998
).
9.
S.
Brandl
,
E.
Schomburg
,
R.
Scheurer
,
K.
Hofbeck
,
J.
Grenzer
,
K. F.
Renk
,
D. G.
Pavel’ev
,
Yu.
Koschurinov
,
A.
Zhukov
,
A.
Kovsch
,
V.
Ustinov
,
S.
Ivanov
, and
P. S.
Kop’ev
,
Appl. Phys. Lett.
73
,
3117
(
1998
).
10.
H.
Eisele
and
G. I.
Haddad
, in
Modern Semiconductor Devices
, edited by
S. M.
Sze
(
Wiley
,
New York
,
1997
), Chap. 6, pp.
343
407
.
11.
G. I.
Haddad
,
J.
East
, and
H.
Eisele
, in
Terahertz Sensing Technology
,
Electronic Devices and Advanced Systems Technology
Vol.
I
, edited by
D. L.
Woolard
,
W. R.
Leorop
, and
M. S.
Shur
(
World Scientific
,
Singapore
,
2003
), pp.
45
77
.
12.
H.
Eisele
and
G. I.
Haddad
,
IEEE Trans. Microwave Theory Tech.
46
,
739
(
1998
).
13.
14.
H.
Eisele
,
M.
Naftaly
, and
R.
Kamoua
,
Int. J. Infrared Millim. Waves
26
,
1
(
2005
).
15.
H.
Eisele
,
A.
Rydberg
, and
G. I.
Haddad
,
IEEE Trans. Microwave Theory Tech.
48
,
626
(
2000
).
You do not currently have access to this content.