Negative differential resistance devices, based on two similar AlAs/GaAs superlattice structures, were fabricated using a standard selective etching and integral heat sink technology and evaluated in a resonant-cap full-height WR-15 waveguide cavity. Devices from both superlattice structures generated comparable output powers in the fundamental mode at 59–71 GHz. The best devices yielded (with corresponding dc-to-RF conversion efficiencies of ) around 63 GHz. In a second-harmonic mode, these devices yielded up to 14 mW (1%) at 133 GHz. Higher harmonic frequencies were also observed with powers of at 190 GHz and at 260 GHz. The highest observed dc-to-RF conversion efficiency was 5.1% at 62.8 GHz.
REFERENCES
1.
2.
H.
Le Person
, C.
Minot
, L.
Boni
, J. F.
Palmier
, and F.
Mollot
, Appl. Phys. Lett.
60
, 2397
(1992
).3.
E.
Schomburg
, M.
Henini
, J. M.
Chamberlain
, P.
Steenson
, S.
Brandl
, K.
Hofbeck
, K. F.
Renk
, and W.
Wegscheider
, Appl. Phys. Lett.
74
, 2179
(1999
).4.
R.
Scheuerer
, E.
Schomburg
, K. F.
Renk
, A.
Wacker
, and E.
Schöll
, Appl. Phys. Lett.
81
, 1515
(2002
).5.
M.
Haeussler
, E.
Schomburg
, J. -M.
Batke
, F.
Klappenberger
, A.
Weber
, H.
Appel
, K. F.
Renk
, H.
Hummel
, B.
Ströbl
, D. G.
Pavel’ev
, and Yu.
Koschurinov
, Electron. Lett.
39
, 784
(2003
).6.
E.
Schomburg
, J.
Grenzer
, K.
Hofbeck
, T.
Blomeier
, S.
Winnerl
, S.
Brandl
, A. A.
Ignatov
, K. F.
Renk
, D. G.
Pavel’ev
, Yu.
Koschurinov
, V.
Ustinov
, A.
Zhukov
, A.
Kovsch
, S.
Ivanov
, and P. S.
Kop’ev
, Solid-State Electron.
42
, 1495
(1998
).7.
E.
Schomburg
, R.
Scheuerer
, S.
Brandl
, K. F.
Renk
, D. G.
Pavel’ev
, Yu.
Koschurinov
, V.
Ustinov
, A.
Zhukov
, A.
Kovsh
, and P. S.
Kop’ev
, Electron. Lett.
35
, 1491
(1999
).8.
E.
Schomburg
, S.
Brandl
, K.
Hofbeck
, T.
Blomeier
, J.
Grenzer
, A. A.
Ignatov
, K. F.
Renk
, D. G.
Pavel’ev
, Yu.
Koschurinov
, V.
Ustinov
, A.
Zhukov
, A.
Kovsch
, S.
Ivanov
, and P. S.
Kop’ev
, Appl. Phys. Lett.
72
, 1498
(1998
).9.
S.
Brandl
, E.
Schomburg
, R.
Scheurer
, K.
Hofbeck
, J.
Grenzer
, K. F.
Renk
, D. G.
Pavel’ev
, Yu.
Koschurinov
, A.
Zhukov
, A.
Kovsch
, V.
Ustinov
, S.
Ivanov
, and P. S.
Kop’ev
, Appl. Phys. Lett.
73
, 3117
(1998
).10.
H.
Eisele
and G. I.
Haddad
, in Modern Semiconductor Devices
, edited by S. M.
Sze
(Wiley
, New York
, 1997
), Chap. 6, pp. 343
–407
.11.
G. I.
Haddad
, J.
East
, and H.
Eisele
, in Terahertz Sensing Technology
, Electronic Devices and Advanced Systems Technology
Vol. I
, edited by D. L.
Woolard
, W. R.
Leorop
, and M. S.
Shur
(World Scientific
, Singapore
, 2003
), pp. 45
–77
.12.
H.
Eisele
and G. I.
Haddad
, IEEE Trans. Microwave Theory Tech.
46
, 739
(1998
).13.
G.
Bastard
, Phys. Rev. B
24
, 5693
(1981
).14.
H.
Eisele
, M.
Naftaly
, and R.
Kamoua
, Int. J. Infrared Millim. Waves
26
, 1
(2005
).15.
H.
Eisele
, A.
Rydberg
, and G. I.
Haddad
, IEEE Trans. Microwave Theory Tech.
48
, 626
(2000
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.