Ti3SiC2 was prepared by hot-pressing sintering. The dielectric permittivity and electromagnetic interference (EMI) shielding effectiveness (SE) are measured for the Ti3SiC2 material and pure titanium (Ti) metal in the frequency range of 8.2–18 GHz (X-band and Ku-band). The results show that Ti3SiC2 material exhibits high complex permittivities at the measured frequencies. Compared to the EMI-SE achieved by pure Ti metal, an EMI-SE value as high as 35–54 dB has been achieved in the X-band and Ku-band frequencies for Ti3SiC2 material, which suggests that it should be an effective EMI shielding material for structural applications.

1.
W.
Van Eck
,
Comput. Secur.
4
,
269
(
1985
).
2.
J.
Joo
and
A. J.
Epstein
,
Appl. Phys. Lett.
65
,
2278
(
1994
).
3.
H. K.
Miller
,
Mater. Eval.
55
,
994
(
1997
).
4.
T. A.
Ezquerra
,
F.
Kremer
,
M.
Mohammadi
,
J.
Ruhe
,
G.
Wegner
, and
B.
Wessling
,
Synth. Met.
28
,
83
(
1989
).
5.
P.
Zarras
,
N.
Anderson
,
C.
Webber
,
D. J.
Irvin
,
J. A.
Irvin
,
A.
Guenthner
, and
J. D.
Stenger-Smith
,
Radiat. Phys. Chem.
68
,
387
(
2003
).
6.
E.
Dalas
,
J. Mater. Sci.
27
,
453
(
1992
).
7.
L. G.
Paterno
and
L. H. C.
Mattoso
,
Polymer
42
,
5239
(
2001
).
8.
N. C.
Das
,
S.
Yamazaki
,
M.
Hikosaka
,
T. K.
Chaki
,
D.
Khastgir
, and
A.
Chakraborty
,
Polym. Int.
54
,
256
(
2005
).
9.
S.
Motojima
,
Y.
Noda
,
S.
Hoshiya
, and
Y.
Hishikawa
,
J. Appl. Phys.
94
,
2325
(
2003
).
10.
H. M.
Kim
,
K.
Kim
,
C. Y.
Lee
,
J.
Joo
,
S. J.
Cho
,
H. S.
Yoon
,
D. A.
Pejaković
,
J. W.
Yoo
, and
A. J.
Epstein
,
Appl. Phys. Lett.
84
,
589
(
2004
).
11.
M. W.
Barsoum
and
T.
El-Raghy
,
J. Am. Ceram. Soc.
79
,
1953
(
1996
).
12.
I. M.
Low
,
S. K.
Lee
,
B. R.
Lawn
, and
M. W.
Barsoum
,
J. Am. Ceram. Soc.
81
,
225
(
1998
).
13.
M. W.
Barsoum
and
T.
El-Raghy
,
Metall. Mater. Trans. A
30
,
363
(
1999
).
14.
J. C.
Ho
,
H. H.
Hamdeh
,
M. W.
Barsoum
, and
T.
El-Raghy
,
J. Appl. Phys.
86
,
3609
(
1999
).
15.
H. -I.
Yoo
,
M. W.
Barsoum
, and
T.
El-Raghy
,
Nature (London)
407
,
581
(
2000
).
16.
M. W.
Barsoum
,
Prog. Solid State Chem.
28
,
201
(
2000
).
17.
S. L.
Shi
,
L. Z.
Zhang
, and
J. S.
Li
,
J. Appl. Phys.
103
,
124103
(
2008
).
18.
Z. M.
Sun
,
S. L.
Yang
, and
H.
Hashimoto
,
Ceram. Int.
30
,
1873
(
2004
).
19.
A. N.
Lagarkov
and
A. K.
Sarychev
,
Phys. Rev. B
53
,
6318
(
1996
).
20.
N. I.
Medvedeva
,
D. L.
Novikov
,
A. L.
Ivanovsky
,
M. V.
Kuznetsov
, and
A. J.
Freeman
,
Phys. Rev. B
58
,
16042
(
1998
).
21.
Z. M.
Sun
and
Y. C.
Zhou
,
Phys. Rev. B
60
,
1441
(
1999
).
22.
R.
Ahuja
,
O.
Eriksson
,
J. M.
Wills
, and
B.
Johannsson
,
Appl. Phys. Lett.
76
,
2226
(
2000
).
23.
M.
Magnuson
,
J. -P.
Palmquist
,
M.
Mattesini
,
S.
Li
,
R.
Ahuja
,
O.
Eriksson
,
J.
Emmerlich
,
O.
Wilhelmsson
,
P.
Eklund
,
H.
Högberg
,
L.
Hultman
, and
U.
Jansson
,
Phys. Rev. B
72
,
245101
(
2005
).
24.
N. F.
Colaneri
and
L. W.
Shacklette
,
IEEE Trans. Instrum. Meas.
41
,
291
(
1992
).
25.
P.
Chandrasekhar
and
K.
Naishadham
,
Synth. Met.
105
,
115
(
1999
).
26.
B. W.
Li
,
Y.
Shen
,
Z. X.
Yue
, and
C. W.
Nan
,
Appl. Phys. Lett.
89
,
132504
(
2006
).
27.
N. C.
Das
and
S.
Maiti
,
J. Mater. Sci.
43
,
1920
(
2008
).
28.
R. B.
Mathur
,
S.
Pande
,
B. P.
Singh
, and
T. L.
Dhami
,
Polym. Compos.
29
,
717
(
2008
).
29.
Y.
Li
,
C. X.
Chen
,
S.
Zhang
,
Y. W.
Ni
, and
J.
Huang
,
Appl. Surf. Sci.
254
,
5766
(
2008
).
You do not currently have access to this content.