The hydrogenation of Mg film and Mg nanoblade array fabricated on Ti coated Si substrates has been studied and compared. The nanoblades start to absorb hydrogen at a temperature between 250 and 300°C, which is much lower than 350°C for Mg film. However, the saturated total hydrogen uptake in nanoblades is less than half of that in the film, resulting from MgO formation by air exposure. The nanoblade morphology with large surface area and small hydrogen diffusion length, and the catalytic effect of Ti layer, are two main reasons for the nanoblade hydrogenation behavior.

1.
K. C.
Hoffman
,
J. J.
Reilly
,
F. J.
Salzano
,
C. H.
Waide
,
R. H.
Wiswall
, and
W. E.
Winsche
,
Int. J. Hydrogen Energy
1
,
133
(
1976
).
2.
L.
Zaluski
,
A.
Zaluska
, and
J. O.
StromOlsen
,
J. Alloys Compd.
253
,
70
(
1997
).
3.
B.
Sakintuna
,
F.
Lamari-Darkrim
, and
M.
Hirscher
,
Int. J. Hydrogen Energy
32
,
1121
(
2007
).
4.
D.
Fatay
,
A.
Revesz
, and
T.
Spassov
,
J. Alloys Compd.
399
,
237
(
2005
).
5.
R.
Griessen
and
T.
Riesterer
,
Top. Appl. Phys.
63
,
219
(
1988
).
6.
E.
David
,
J. Mater. Process. Technol.
162
,
169
(
2005
).
7.
A.
Leon
,
E. J.
Knystautas
,
J.
Huot
, and
R.
Schulz
,
J. Alloys Compd.
345
,
158
(
2002
).
8.
A.
Leon
,
E. J.
Knystautas
,
J.
Huot
,
S.
Lo Russo
,
C. H.
Koch
, and
R.
Schulz
,
J. Alloys Compd.
356
,
530
(
2003
).
9.
S.
Singh
,
S. W. H.
Eijt
,
M. W.
Zandbergen
,
W. J.
Legerstee
, and
V. L.
Svetchnikov
,
J. Alloys Compd.
441
,
344
(
2007
).
10.
F.
Tang
,
T.
Parker
,
H. F.
Li
,
G. C.
Wang
, and
T. M.
Lu
,
J. Nanosci. Nanotechnol.
7
,
3239
(
2007
).
11.
Y. P.
He
,
Y. P.
Zhao
, and
J. S.
Wu
,
Appl. Phys. Lett.
92
,
063107
(
2008
).
12.
Y. P.
He
,
Z. Y.
Zhang
,
C.
Hoffmann
, and
Y. P.
Zhao
,
Adv. Funct. Mater.
18
,
1676
(
2008
).
13.
Our recent study shows that at a moderate hydrogenation temperature, such as 200°C or lower, Mg has already started to react with the Si substrate to form a stable Mg2Si alloy, which reduces the amount of Mg converted to MgH2 and strongly affects the H-storage reversibility and cycling performance.
14.
R.
Messier
,
A. P.
Giri
, and
R. A.
Roy
,
J. Vac. Sci. Technol. A
2
,
500
(
1984
).
15.
J. L.
Bobet
,
C.
Even
,
Y.
Nakamura
,
E.
Akiba
, and
B.
Darriet
,
J. Alloys Compd.
298
,
279
(
2000
).
16.
R. J.
Composto
,
R. M.
Walters
, and
J.
Genzer
,
Mater. Sci. Eng., R.
38
,
107
(
2002
).
17.

The transfer of samples from Georgia to Pennsylvania for FRES measurements was under ambient condition.

18.
G.
Liang
,
J.
Huot
,
S.
Boily
,
A.
Van Neste
, and
R.
Schulz
,
J. Alloys Compd.
292
,
247
(
1999
).
19.
K.
Nobuhara
,
H.
Kasai
,
W. A.
Dino
, and
H.
Nakanishi
,
Surf. Sci.
566
,
703
(
2004
).
20.
A. J.
Du
,
S. C.
Smith
,
X. D.
Yao
, and
G. Q.
Lu
,
J. Phys. Chem. B
109
,
18037
(
2005
).
21.
P.
Selvam
,
B.
Viswanathan
,
C. S.
Swamy
, and
V.
Srinivasan
,
Int. J. Hydrogen Energy
11
,
169
(
1986
).
You do not currently have access to this content.