Highly aligned, 2-3 wall carbon nanotube (CNT) arrays were used to examine the kinetics of CNT growth. A growth interruption method was used to determine the in situ growth rate. The growth interruption method with a water vapor treatment or acetylene treatment during the interruption enabled the production of CNT stacks with different morphologies. The catalytic activity was also monitored using this method. The lifetime of the catalyst was predicted and verified using the catalyst decay model. High temperature metal oxidation behavior using parabolic curve fitting is assigned to the decay process. Details of the analysis are presented.

1.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
2.
W. Z.
Li
,
S. S.
Xie
,
L. X.
Qian
,
B. H.
Chang
,
B. S.
Zou
,
W. Y.
Zhou
,
R. A.
Zhao
, and
G.
Wang
,
Science
274
,
1701
(
1996
).
3.
C. N. R.
Rao
,
R.
Sen
,
B. C.
Satishkumar
, and
A.
Govindaraj
,
Chem. Commun. (Cambridge)
1998
,
1525
.
4.
Z. F.
Ren
,
Z. P.
Huang
,
J. W.
Xu
,
J. H.
Wang
,
P.
Bush
,
M. P.
Siegal
, and
P. N.
Provencio
,
Science
282
,
1105
(
1998
).
5.
S. S.
Fan
,
M. G.
Chapline
,
N. R.
Franklin
,
T. W.
Tombler
,
A. M.
Cassell
, and
H. J.
Dai
,
Science
283
,
512
(
1999
).
6.
Y.
Murakami
,
S.
Chiashi
,
Y.
Miyauchi
,
M. H.
Hu
,
M.
Ogura
,
T.
Okubo
, and
S.
Maruyama
,
Chem. Phys. Lett.
385
,
298
(
2004
).
7.
K.
Hata
,
D. N.
Futaba
,
K.
Mizuno
,
T.
Namai
,
M.
Yumura
, and
S.
Iijima
,
Science
306
,
1362
(
2004
).
8.
G. F.
Zhong
,
T.
Iwasaki
,
K.
Honda
,
Y.
Furukawa
,
I.
Ohdomari
, and
H.
Kawarada
,
Chem. Vap. Deposition
11
,
127
(
2005
).
9.
M.
Kumar
,
T.
Okazaki
,
M.
Hiramatsu
, and
Y.
Ando
,
Carbon
45
,
1899
(
2007
).
10.
S. P.
Patole
,
P. S.
Alegaonkar
,
H. C.
Shin
, and
J. B.
Yoo
,
J. Phys. D
41
,
155311
(
2008
).
11.

See EPAPS Document No. E-APPLAB-93-095834 for growth interruption scheme and reference SEM image for 6min (without interruption) grown CNT sample. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.

12.
Y. H.
Yun
,
V.
Shanov
,
Y.
Tu
,
S.
Subramaniam
, and
M. J.
Schulz
,
J. Phys. Chem. B
110
,
23920
(
2006
).
13.
S. P.
Patole
,
P. S.
Alegaonkar
,
J. H.
Lee
, and
J. B.
Yoo
,
Europhys. Lett.
81
,
38002
(
2008
).
14.
D. N.
Futaba
,
K.
Hata
,
T.
Yamada
,
K.
Mizuno
,
M.
Yumura
, and
S.
Ijima
,
Phys. Rev. Lett.
95
,
056104
(
2005
).
15.
E.
Einarsson
,
Y.
Murakamia
,
M.
Kadowakia
, and
S.
Maruyama
,
Carbon
46
,
923
(
2008
).
16.
O. A.
Louchev
,
Y.
Sato
, and
H.
Kanda
,
Appl. Phys. Lett.
80
,
2752
(
2002
).
17.
R.
Xiang
,
Z.
Yang
,
Q.
Zhang
,
G.
Luo
,
W.
Qian
,
F.
Wei
,
M.
Kadowaki
,
E.
Einarsson
, and
S.
Maruyama
,
J. Phys. Chem. C
112
,
4892
(
2008
).
18.
P.
Kofstad
,
High Temperature Corrosion
(
Elsevier
,
London
,
1988
).
19.
L.
Zhu
,
D. W.
Hess
, and
C. P.
Wong
,
J. Phys. Chem. B
110
,
5445
(
2006
).

Supplementary Material

You do not currently have access to this content.