An ensemble of electrophoretically captured gold nanoparticles is exploited to fingerprint their velocity distribution in solution. The electrophoretic capture is performed using a dc biased nanogap electrode, and panoramic scanning electron microscopic images are inspected to obtain the regional density of the captured gold nanoparticles. The regional density profile along the surface of the electrode is in a quantitative agreement with the calculated density of the captured nanoparticles. The calculated density is obtained by counting, in the Boltzmann distribution, the number of nanoparticles whose thermal velocity is smaller than the electrophoretic velocity.

1.
G.
Schmid
,
Nanoparticles from Theory to Application
(
Wiley-VCH
,
Weinheim
,
2004
).
2.
R.
Negishi
,
T.
Hasegawa
,
K.
Terabe
,
M.
Aono
,
H.
Tanaka
,
T.
Ogawa
, and
H.
Ozawa
,
Appl. Phys. Lett.
90
,
223112
(
2007
).
3.
S. H.
Hong
,
H. K.
Kim
,
K. H.
Cho
,
S. W.
Hwang
,
J. S.
Hwang
, and
D.
Ahn
,
J. Vac. Sci. Technol. B
24
,
136
(
2006
).
4.
S. H.
Hong
,
M. G.
Kang
,
H. Y.
Cha
,
M. H.
Son
,
J. S.
Hwang
,
H. J.
Lee
,
S. H.
Sull
,
S. W.
Hwang
,
D.
Whang
, and
D.
Ahn
,
Nanotechnology
19
,
105305
(
2008
).
5.
E.
Pelizetti
,
Fine Particles Science and Technology, from Micro to Nanoparticles
(
Kluwer Academic
,
Dordrecht
,
1996
).
6.
7.
F.
Reif
,
Fundamentals of Statistical and Thermal Physics
(
McGraw Hill
,
London
,
1981
).
8.
A commercial finite element method electromagnetic simulator: MAXWELL 3D, Ansoft.
9.
S.
Oh
,
C.
Hyon
,
S.
Sull
,
S.
Hwang
, and
Y.
Park
,
Rev. Sci. Instrum.
74
,
4687
(
2003
).
You do not currently have access to this content.