Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions’ unique transport properties in graphene layers. The measured electron and hole mobilities on these fabricated graphene FETs are as high as 5400 and 4400cm2Vs, respectively, which are much larger than the corresponding values from conventional SiC or silicon.

1.
H.
Shang
,
H.
Okorn-Schimdt
,
J.
Ott
,
P.
Kozlowski
,
S.
Steen
,
E. C.
Jones
,
H. S. P.
Wong
, and
W.
Hanesch
,
IEEE Electron Device Lett.
24
,
242
(
2003
).
2.
P. D.
Ye
,
G. D.
Wilk
,
J.
Kwo
,
B.
Yang
,
H.-J. L.
Gossmann
,
M.
Frei
,
S. N. G.
Chu
,
J. P.
Mannaerts
,
M.
Sergent
,
M.
Hong
,
K.
Ng
, and
J.
Bude
,
IEEE Electron Device Lett.
24
,
209
(
2003
).
3.
S. J.
Tans
,
R. M.
Verschueren
, and
C.
Dekker
,
Nature (London)
393
,
49
(
1998
).
4.
A.
Javey
,
G.
Jing
,
W.
Qian
,
M.
Lundstrom
, and
H.
Dai
,
Nature (London)
424
,
654
(
2003
).
5.
S. J.
Wind
,
J.
Appenzeller
,
R.
Martel
,
V.
Derycke
, and
P.
Avouris
,
Appl. Phys. Lett.
80
,
3817
(
2002
).
6.
A. K.
Geim
and
K. S.
Novoselov
,
Nat. Mater.
6
,
183
(
2007
).
7.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
8.
Y.
Zhang
,
Y. W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature (London)
438
,
201
(
2005
).
9.
C.
Berger
,
Z.
Song
,
X.
Li
,
X.
Wu
,
N.
Brown
,
C.
Naud
,
D.
Mayou
,
T.
Li
,
J.
Hass
,
A. N.
Marchenkov
,
E. H.
Conrad
,
P. N.
First
, and
W. A.
de Heer
,
Science
312
,
1191
(
2006
).
10.
M. C.
Lemme
,
T. J.
Echtermeyer
,
M.
Baus
, and
H.
Kurz
,
IEEE Electron Device Lett.
28
,
282
(
2007
).
11.
G.
Gu
,
S.
Niu
,
R. M.
Feenstra
,
R. P.
Devaty
,
W. J.
Choyke
,
W. K.
Chan
, and
M. G.
Kane
,
Appl. Phys. Lett.
90
,
253507
(
2007
).
12.
V. W.
Brar
,
Y.
Zhang
,
Y.
Yayon
,
T.
Ohta
,
J. L.
McChesney
,
A.
Bostwick
,
E.
Totenberg
,
K.
Horn
, and
M. F.
Crommie
,
Appl. Phys. Lett.
91
,
122102
(
2007
).
13.
Y.
Xuan
,
Y.
Wu
,
T.
Shen
,
M.
Qi
,
M. A.
Capano
,
J. A.
Cooper
, and
P. D.
Ye
,
Appl. Phys. Lett.
92
,
013101
(
2008
).
14.
J. R.
Willaims
,
L.
DiGarlo
, and
C. M.
Marcus
,
Science
317
,
638
(
2007
).
15.
D. B.
Farmer
and
R. G.
Gordon
,
Nano Lett.
6
,
699
(
2006
).
16.
M. Y.
Han
,
B.
Ozyilmaz
,
Y.
Zhang
, and
P.
Kim
,
Phys. Rev. Lett.
98
,
206805
(
2007
).
17.
P.
Avouris
,
Z.
Chen
, and
V.
Peterbeinos
,
Nat. Nanotechnol.
2
,
605
(
2007
).
18.
T.
Ohta
,
A.
Bostwick
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
,
Science
313
,
951
(
2006
).
19.
J. B.
Oostinga
,
H. B.
Heersche
,
X.
Liu
,
A. F.
Morpurgo
, and
L. M. K.
Vandersypen
, arXiv:cond-mat/0707.2487.
20.
S. Y.
Zhou
,
G.-H.
Gweon
,
A. V.
Fedorov
,
P. N.
First
,
W. A.
de Heer
,
D.-H.
Lee
,
F.
Guinea
,
A. H.
Castro Neto
, and
A.
Lanzara
, arXiv:cond-mat/0709.1706.
21.
B.
Huard
,
J. A.
Sulpizio
,
N.
Stander
,
K.
Todd
,
B.
Yang
, and
D.
Goldhaber-Gordon
,
Phys. Rev. Lett.
98
,
236803
(
2007
).
22.
B.
Ozyilmaz
,
P.
Jarillo-Herrero
,
D.
Efetov
,
D. A.
Abanin
,
L. S.
Levitov
, and
P.
Kim
,
Phys. Rev. Lett.
99
,
166804
(
2007
).
23.
T.
Fang
,
A.
Konar
,
H. L.
Xing
, and
D.
Jena
,
Appl. Phys. Lett.
91
,
092109
(
2007
).
24.
M. M.
Fogler
,
L. I.
Glazman
,
D. S.
Novikov
, and
B. I.
Shklovskii
, arXiv:0710.2150.
You do not currently have access to this content.